Lecture 8 2022/2023 Microwave Devices and Circuits for Radiocommunications

2022/2023

- 2C/1L, MDCR
- <u>Attendance at minimum 7 sessions (course or</u> <u>laboratory)</u>
- Lectures- associate professor Radu Damian
 - Tuesday 12-14, Online, P8
 - E 50% final grade
 - problems + (2p atten. lect.) + (3 tests) + (bonus activity)
 - first test L1: 21-28.02.2023 (t2 and t3 not announced, lecture)
 - 3att.=+0.5p
 - all materials/equipments authorized

- Laboratory associate professor Radu Damian
 - Tuesday 08-12, II.13 / (08:10)
 - L 25% final grade
 - ADS, 4 sessions
 - Attendance + personal results
 - P 25% final grade
 - ADS, 3 sessions (-1? 21.02.2022)
 - personal homework

Materials

http://rf-opto.etti.tuiasi.ro

🔹 Laborator	ul de Microunde si Opt 🗴 +					
\leftrightarrow > C	Not secure rf-opto.etti.tuiasi.ro/microwave_cd.php?chg_lang=0					☆ 🚯
	Main <u>Courses</u> Master Staff Research Students Admin					
	Microwave CD Optical Communications Optoelectronics Internet Antennas Practica Networks Edu	cational software				
	Microwave Devices and Circuits for Radiocommunications (Er	nglish)				
	Course: MDCR (2017-2018)					
	Course Coordinator: Assoc.P. Dr. Radu-Florin Damian					
	Discipline Type: DOS; Alternative, Specialty Credits: 4			Server Server 1	1,222.0	at ten -
	Enrollment Year: 4, Sem. 7	and the				lines 👗
	Activities	(LETTIX)				
	Course: Instructor: Assoc.P. Dr. Radu-Florin Damian, 2 Hours/Week, Specialization Section, Timetable: Laboratory: Instructor: Assoc.P. Dr. Radu-Florin Damian, 1 Hours/Week, Group, Timetable:	ALLY.				3
	Evaluation	1 st				List List
	Type: Examen					
	A: 50%, (Test/Colloquium) B: 25%, (Seminary/Laboratory/Project Activity) D: 25%, (Homework/Specialty papers)		Romana			
	Grades	Main	Courses	Macter	Staff	Dec
	Aggregate. Results	Main	Courses	Master	Juan	Res
	Attendance	Crades	Oludard Link	-	Dhataa	
	Course Laboratory	Grades	Student List	Exams	Photos	
	Lists					
	Bonus-uri acumulate (final) Studenti care nu pot intra in examen	Online Ex	ams			
	Materials					
	Course Slides	In order to partie	cipate at online e	xams you mu	st get ready	following

A she waste waste above

11---

C.

<u>MDCR Lecture 1</u> (pdf, 5.43 MB, en, 38) <u>MDCR Lecture 2</u> (pdf, 3.67 MB, en, 38) <u>MDCR Lecture 3</u> (pdf, 4.76 MB, en, 38) MDCR Lecture 4 (pdf, 5.58 MB, en, 38)

Materials

RF-OPTO

- http://rf-opto.etti.tuiasi.ro
- David Pozar, "Microwave Engineering", Wiley; 4th edition, 2011

Photos

- sent by email/online exam
- used at lectures/laboratory

Access

Not customized

			Date:							
	-	10.00	Grupa	Grupa 5304 (2015/2016)						
			Specializarea	Specializarea Tehnologii si sisteme de telecom						
			Marca	5184						
ote obt	ca ac	est student	>							
ote obt	ca ac in ci Tip	est student	Descriere		Nota	Puncte	Obs.			
ote obt isciplina TW	<u>ca ac</u> inter Tip Teh	est student C Data nologii Web	Descriere		Nota	Puncte	Obs.			
ote obt	ca ac Tip Teh N	est student Data nologii Web 17/01/2014	Descriere Nota finala		Nota 10	Puncte	Obs.			
ote obt visciplina TW	tip Tip Teh N A	est student Data nologii Web 17/01/2014 17/01/2014	Descriere Nota finala Colocviu Tehnologii	Web 2013/2014	Nota 10 10	Puncte - 7.55	Obs.			
ote obt	Tip Teh N A B	est student Data nologii Web 17/01/2014 17/01/2014 17/01/2014	Descriere Nota finala Colocviu Tehnologii Laborator Tehnologi	Web 2013/2014 ii Web 2013/2014	Nota 10 10 9	Puncte - 7.55 -	Obs.			

Online

access to online exams requires the password received by email

Online

access email/password

		Main	Cours	es Master	Staff	Researc			Main	Courses	Master	Staff	Resear
		Grades	Student	List Exams	Photos				Grades	Student List	Exams	Photos	
	PC	PESC	CU GO	OPO ION				PC	PESC	CU GOP	O ION		
		_		Date:	Date:				Date:				
		Fotogr nu exi	ista	Grupa	5700 (2019/	(2020)			nu exi	sta	Grupa	5700 (2019/	/2020)
				Specializarea	Inginerie ele	ectronica si telec					Specializarea	Inginerie ele	ectronica si tel
				Marca	7000000						Marca	7000000	
	You a	ccess the s	ite as this	student!				You a	access the si	te as this stude	nt (including	exams)!	>

Password

received by email

Important message from RF-OPTO Inbox ×

Radu-Florin Damian

to me, POPESCU -

ズ Romanian → > English → Translate message

Laboratorul de Microunde si Optoelectronica Facultatea de Electronica, Telecomunicatii si Tehnologia Informatiei Universitatea Tehnica "Gh. Asachi" Iasi

In atentia: POPESCU GOPO ION

Parola pentru a accesa examenele pe server-ul rf-opto este Parola:

Identificati-va pe server, cu parola, cat mai rapid, pentru confirmare.

Memorati acest mesaj intr-un loc sigur, pentru utilizare ulterioara

Attention: POPESCU GOPO ION

The password to access the exams on the rf-opto server is Password:

Login to the server, with this password, as soon as possible, for confirmation.

Save this message in a safe place for later use

Reply

🗮 Reply all 🔹 🗰 Forward

Laboratorul de Microunde si Optoelectronica Facultatea de Electronica, Telecomunicatii si Tehnologia Informatiei Universitatea Tehnica "Gh. Asachi" Iasi

In atentia: POPESCU GOPO ION

Parola pentru a accesa examenele pe server-ul **rf-opto** este Parola:

Identificati-va pe server, cu parola, cat mai rapid, pentru confirmare.

Memorati acest mesaj intr-un loc sigur, pentru utilizare ulterioara

Attention: POPESCU GOPO ION

The password to access the exams on the **rf-opto** server is Password:

Login to the server, with this password, as soon as possible, for confirmation.

Save this message in a safe place for later use

Online exam manual

- The online exam app used for:
 - Iectures (attendance)
 - Iaboratory
 - project
 - examinations

Examen online

always against a timetable

long period (lecture attendance/laboratory results)

short period (tests: 15min, exam: 2h)

Online results submission

many numerical values/files

Schema finala	Rezultate - castig	Rezultate - zgomot	Fisier justificare calcul (factor andrei)	Fisier zap (optional)	T1, fisier parmetri S	T2, fisier parmetri S	Z1	Z 2	Z 3	Z4	Z5	Z6	27	Ze1	Z01	Ze2	Zo2	Ze3	Zo3	Ze4	Zo4	Ze5	Zo5	Zei
<u>86 -</u> <u>5428 -</u> <u>259</u>	<u>86 -</u> 5428 - 260	<u>86 -</u> 5428 - 261	<u>86 -</u> 5428 - 316		<u>86 -</u> <u>5428 -</u> <u>314</u>	<u>86 -</u> <u>5428 -</u> <u>315</u>	148.33	155.88	202.12	164.35	180.91	30.29	18 <mark>5</mark> .19	<mark>79.</mark> 9	37	68.89	45.14	61.83	45.05	57.97	46.02	61.85	45.05	68.
<u>86 -</u> <u>5622 -</u> <u>259</u>	<u>86 -</u> <u>5622 -</u> <u>260</u>	<u>86 -</u> <u>5622 -</u> <u>261</u>	<u>86 -</u> <u>5622 -</u> <u>316</u>	<u>86 -</u> <u>5622 -</u> <u>262</u>	<u>86 -</u> <u>5622 -</u> <u>314</u>	<u>86 -</u> <u>5622 -</u> <u>315</u>	26.97	153.5	34.64	35.79	55.56	26.212	10.693	0	0	0	0	0	0	0	0	0	0	0
<u>86 -</u> <u>5488 -</u> <u>259</u>	<u>86 -</u> 5488 - 260	<u>86 -</u> <u>5488 -</u> <u>261</u>	<u>86 -</u> <u>5488 -</u> <u>316</u>	<u>86 -</u> <u>5488 -</u> <u>262</u>	<u>86 -</u> <u>5488 -</u> <u>314</u>	<u>86 -</u> <u>5488 -</u> <u>315</u>	0	0	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0
<u>86 -</u> <u>5391 -</u> <u>259</u>	<u>86 -</u> 5391 - 260	<u>86 -</u> 5391 - 261	<u>86 -</u> 5391 - <u>316</u>	-	-	-	50	50	50	50	50	50	50	70.14	40.39	61.85	44.59	55.7	45.2	54.89	45.38	58.65	45.8	70.
<u>86 -</u> <u>5664 -</u> <u>259</u>	<u>86 -</u> <u>5664 -</u> <u>260</u>	<u>86 -</u> <u>5664 -</u> <u>261</u>	86 - 5664 - 316		<u>86 -</u> <u>5664 -</u> <u>314</u>	<u>86 -</u> <u>5664 -</u> <u>315</u>	168.02	150.5	178.28	133.75	92.12	121.67	144.48	<mark>94.3</mark> 6	36 <mark>.</mark> 19	70.77	42 <mark>.</mark> 56	65.69	42.05	55.17	42.29	65.59	42.05	70.
<u>86 -</u> <u>5665 -</u> <u>259</u>	<u>86 -</u> <u>5665 -</u> <u>260</u>	<u>86 -</u> <u>5665 -</u> <u>261</u>	<u>86 -</u> <u>5665 -</u> <u>316</u>	-	<u>86 -</u> <u>5665 -</u> <u>314</u>	<u>86 -</u> <u>5665 -</u> <u>315</u>	162.2	80.8	209.2	140.85	135.1	183.7	167.6	94.58	36.15	78.16	39.77	65.57	45.05	65.57	45.05	78.16	39.77	94.
<u>86 -</u> <u>5433 -</u> 259	<u>86 -</u> 5433 - 260	<u>86 -</u> <u>5433 -</u> <u>261</u>	<u>86 -</u> <u>5433 -</u> <u>316</u>		<u>86 -</u> <u>5433 -</u> <u>314</u>	<u>86 -</u> <u>5433 -</u> <u>315</u>	165.138	106.228	226.157	130.134	72.71	180.177	164.616	101.36	36.11	77.22	42.49	68.02	45.62	60	45.42	68.02	45.62	77.
<u>86 -</u> <u>5608 -</u> <u>259</u>	<u>86 -</u> <u>5608 -</u> <u>260</u>	<u>86 -</u> <u>5608 -</u> <u>261</u>	<u>86 -</u> <u>5608 -</u> <u>316</u>	-	<u>86 -</u> <u>5608 -</u> <u>314</u>	<u>86 -</u> <u>5608 -</u> <u>315</u>	150.84	152.5	30.94	32.37	54.36	19.837	29.85	64.14	40.145	54.32	46.32	53.8	46.7	53.8	46.7	54.32	46.32	54.
<u>86 -</u> <u>5555 -</u> <u>259</u>	<u>86 -</u> <u>5555 -</u> <u>260</u>	86 - 5555 - 261	<u>86 -</u> <u>5555 -</u> <u>316</u>	8	<u>86 -</u> <u>5555 -</u> <u>314</u>	<u>86 -</u> <u>5555 -</u> <u>315</u>	168.001	150.288	178.399	133.115	92.491	121.257	144.126	97.05	36.16	71.13	43.09	65.45	42.12	55.66	42.18	65.45	42.12	71.

Online results submission

many numerical values

Online results submission

Grade = Quality of the work + + Quality of the submission

TEM transmission lines

Course Topics

Transmission lines

- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
- Oscillators and mixers ?

The lossless line

 $V(z) = V_0^+ e^{-j \cdot \beta \cdot z} + V_0^- e^{j \cdot \beta \cdot z}$ $I(z) = \frac{V_0^+}{Z_0} e^{-j \cdot \beta \cdot z} - \frac{V_0^-}{Z_0} e^{j \cdot \beta \cdot z}$ $Z_{L} = \frac{V(0)}{I(0)} \qquad \qquad Z_{L} = \frac{V_{0}^{+} + V_{0}^{-}}{V_{0}^{+} - V_{0}^{-}} \cdot Z_{0}$

 voltage reflection coefficient

$$\Gamma = \frac{V_0^-}{V_0^+} = \frac{Z_L - Z_0}{Z_L + Z_0}$$

Z_o real

The lossless line

$$V(z) = V_0^+ \cdot \left(e^{-j \cdot \beta \cdot z} + \Gamma \cdot e^{j \cdot \beta \cdot z} \right) \qquad \qquad I(z) = \frac{V_0^+}{Z_0} \cdot \left(e^{-j \cdot \beta \cdot z} - \Gamma \cdot e^{j \cdot \beta \cdot z} \right)$$

time-average Power flow along the line

$$P_{avg} = \frac{1}{2} \cdot \operatorname{Re}\left\{V(z) \cdot I(z)^{*}\right\} = \frac{1}{2} \cdot \frac{\left|V_{0}^{+}\right|^{2}}{Z_{0}} \cdot \operatorname{Re}\left\{1 - \Gamma^{*} \cdot e^{-2j \cdot \beta \cdot z} + \Gamma \cdot e^{2j \cdot \beta \cdot z} - \left|\Gamma\right|^{2}\right\}$$

$$P_{avg} = \frac{1}{2} \cdot \frac{\left|V_{0}^{+}\right|^{2}}{Z_{0}} \cdot \left(1 - \left|\Gamma\right|^{2}\right)$$

Total power delivered to the load = Incident power – "Reflected" power
 Return "Loss" [dB] RL = -20 · log |Γ| [dB]

The lossless line

 input impedance of a length *l* of transmission line with characteristic impedance *Z_o*, loaded with an arbitrary impedance *Z_L*

General theory Microwave Network Analysis

 V₂⁺ = 0 meaning: port 2 is terminated in matched load to avoid reflections towards the port

$$\Gamma_2 = 0 \longrightarrow V_2^+ = 0$$

S₁₁ and S₂₂ are reflection coefficients at ports
 1 and 2 when the other port is matched

S₂₁ si S₁₂ are signal amplitude gain when the other port is matched

- a,b
 - information about signal power AND signal phase
- S_{ii}
 - network effect (gain) over signal power including phase information

Impedance Matching

The Smith Chart

The Smith Chart

The Smith Chart

Impedance matching Impedance Matching with lumped elements (L Networks)

Course Topics

- Transmission lines
- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
- Oscillators and mixers ?

The Smith Chart, reflection coefficient, impedance matching

Matching, series reactance

$$z_{L} = r_{L} + j \cdot x_{L}$$
$$z_{in} = r_{L} + j \cdot (x_{L} + x_{1})$$
$$r_{in} = r_{L}$$

- Match can be obtained if and only if r_L = 1
- we compensate the reactive part of the load

 $j \cdot x_1 = -j \cdot x_L$

Smith chart, r=1 and g=1

Matching with 2 reactive elements (L Networks)

- Two steps matching
 - first reactive element moves the reflection coefficient
 on the circle r_L = 1/g_L = 1
 - second element compensates the remaining reactance and achieves the impedance match

series C, shunt C / shunt C, series C

Matching with 2 reactive elements (L Networks)

Forbidden area for current network

Impedance Matching Impedance Matching with Stubs
Smith chart, r=1 and g=1

Single stub tuning

Shunt Stub

Single stub tuning

- Series Stub
- difficult to realize in single conductor line technologies (microstrip)

Analytical solutions

Exam / Project

Case 1, Shunt Stub

Shunt Stub

Analytical solution, usage

$$\cos(\varphi + 2\theta) = -|\Gamma_{S}|$$

$$\theta_{sp} = \beta \cdot l = \tan^{-1} \frac{\mp 2 \cdot |\Gamma_{S}|}{\sqrt{1 - |\Gamma_{S}|^{2}}}$$

 $|\Gamma_s| = 0.593; \quad \varphi = 46.85^\circ \qquad \cos(\varphi + 2\theta) = -0.593 \Rightarrow (\varphi + 2\theta) = \pm 126.35^\circ$

- The sign (+/-) chosen for the series line equation imposes the sign used for the shunt stub equation
 - "+" solution $(46.85^{\circ} + 2\theta) = +126.35^{\circ}$ $\theta = +39.7^{\circ}$ Im $y_s = \frac{-2 \cdot |\Gamma_s|}{\sqrt{1 - |\Gamma_s|^2}} = -1.472$ $\theta_{sp} = \tan^{-1}(\operatorname{Im} y_s) = -55.8^{\circ}(+180^{\circ}) \rightarrow \theta_{sp} = 124.2^{\circ}$

• "-" solution ↓

$$(46.85^{\circ} + 2\theta) = -126.35^{\circ}$$
 $\theta = -86.6^{\circ}(+180^{\circ}) \rightarrow \theta = 93.4^{\circ}$
Im $y_s = \frac{+2 \cdot |\Gamma_s|}{\sqrt{1 - |\Gamma_s|^2}} = +1.472$ $\theta_{sp} = \tan^{-1}(\operatorname{Im} y_s) = 55.8^{\circ}$

Analytical solution, usage

$$(\varphi + 2\theta) = \underbrace{+26.35^{\circ}}_{-126.35^{\circ}} \theta = \begin{cases} 39.7^{\circ} \\ 93.4^{\circ} \end{cases} \operatorname{Im}[y_{s}(\theta)] = \underbrace{+1.472}_{+1.472} \theta_{sp} = \begin{cases} -55.8^{\circ} + 180^{\circ} = 124.2^{\circ} \\ +55.8^{\circ} \end{cases}$$

We choose one of the two possible solutions
 The sign (+/-) chosen for the series line equation imposes the sign used for the shunt stub equation

$$l_{1} = \frac{39.7^{\circ}}{360^{\circ}} \cdot \lambda = 0.110 \cdot \lambda$$

$$l_{1} = \frac{93.4^{\circ}}{360^{\circ}} \cdot \lambda = 0.259 \cdot \lambda$$

$$l_{2} = \frac{124.2^{\circ}}{360^{\circ}} \cdot \lambda = 0.345 \cdot \lambda$$

$$l_{2} = \frac{55.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.155 \cdot \lambda$$

$$l_{2} = \frac{55.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.155 \cdot \lambda$$

Case 2, Series Stub

- Series Stub
- difficult to realize in single conductor line technologies (microstrip)

Analytical solution, usage

$$\cos(\varphi + 2\theta) = |\Gamma_{s}|$$

$$\theta_{ss} = \beta \cdot l = \cot^{-1} \frac{\mp 2 \cdot |\Gamma_s|}{\sqrt{1 - |\Gamma_s|^2}}$$

 $\Gamma_s = 0.555 \angle -29.92^\circ$ $|\Gamma_s| = 0.555; \quad \varphi = -29.92^\circ \qquad \cos(\varphi + 2\theta) = 0.555 \Rightarrow (\varphi + 2\theta) = \pm 56.28^\circ$

- The sign (+/-) chosen for the series line equation imposes the sign used for the series stub equation
 - "+" solution $(-29.92^{\circ}+2\theta) = +56.28^{\circ}$ $\theta = 43.1^{\circ}$ Im $z_s = \frac{+2 \cdot |\Gamma_s|}{\sqrt{1-|\Gamma_s|^2}} = +1.335$ $\theta_{ss} = -\cot^{-1}(\operatorname{Im} z_s) = -36.8^{\circ}(+180^{\circ}) \rightarrow \theta_{ss} = 143.2^{\circ}$
 - "-" solution

$$(-29.92^{\circ} + 2\theta) = -56.28^{\circ} \qquad \theta = -13.2^{\circ}(+180^{\circ}) \rightarrow \theta = 166.8^{\circ}$$

Im $z_s = \frac{-2 \cdot |\Gamma_s|}{\sqrt{1 - |\Gamma_s|^2}} = -1.335 \qquad \theta_{ss} = -\cot^{-1}(\operatorname{Im} z_s) = 36.8^{\circ}$

Analytical solution, usage

$$(\varphi + 2\theta) = -56.28^{\circ} \theta = \begin{cases} 43.1^{\circ} \\ 166.8^{\circ} \end{cases} \operatorname{Im}[z_{s}(\theta)] = -1.335 \\ -1.335 \\ \theta_{ss} = \begin{cases} -36.8^{\circ} + 180^{\circ} = 143.2^{\circ} \\ +36.8^{\circ} \end{cases}$$

We choose one of the two possible solutions
 The sign (+/-) chosen for the series line equation imposes the sign used for the series stub equation

$$l_{1} = \frac{43.1^{\circ}}{360^{\circ}} \cdot \lambda = 0.120 \cdot \lambda$$

$$l_{2} = \frac{143.2^{\circ}}{360^{\circ}} \cdot \lambda = 0.398 \cdot \lambda$$

$$l_{2} = \frac{143.2^{\circ}}{360^{\circ}} \cdot \lambda = 0.398 \cdot \lambda$$

$$l_{2} = \frac{36.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.102 \cdot \lambda$$

$$l_{2} = \frac{36.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.102 \cdot \lambda$$

$$l_{2} = \frac{36.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.102 \cdot \lambda$$

$$l_{2} = \frac{36.8^{\circ}}{360^{\circ}} \cdot \lambda = 0.102 \cdot \lambda$$

Impedance Matching with Stubs

Microwave Amplifiers

Microwave Amplifiers

S parameters for transistors

- Charaterized with S parameters
- normalized at Zo (implicit 50Ω)
- Datasheets: S parameters for specific bias conditions

Datasheets

NE46100

VCE = 5 V, IC = 50 mA _

FREQUENCY	ENCY S11		S 21		S	S 12		S22		MAG ²	
(MHz)	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG		(dB)	
100	0.778	-137	26.776	114	0.028	30	0.555	-102	0.16	29.8	
200	0.815	-159	14.407	100	0.035	29	0.434	-135	0.36	26.2	
500	0.826	-177	5.855	84	0.040	38	0.400	-162	0.75	21.7	
800	0.827	176	3.682	76	0.052	43	0.402	-169	0.91	18.5	
1000	0.826	173	2.963	71	0.058	47	0.405	-172	1.02	16.3	
1200	0.825	170	2.441	66	0.064	47	0.412	-174	1.08	14.0	
1400	0.820	167	2.111	61	0.069	47	0.413	-176	1.17	12.4	
1600	0.828	165	1.863	57	0.078	54	0.426	-177	1.15	11.4	
1800	0.827	162	1.671	53	0.087	50	0.432	-178	1.14	10.6	
2000	0.828	159	1.484	49	0.093	50	0.431	-180	1.17	9.5	
2500	0.822	153	1.218	39	0.11	48	0.462	177	1.18	7.8	
3000	0.818	148	1.010	30	0.135	46	0.490	174	1.16	6.3	
3500	0.824	142	0.876	21	0.147	44	0.507	170	1.16	5.3	
4000	0.812	137	0.762	13	0.168	38	0.535	167	1.14	4.3	
	- 400										
VCE = 5 V, IC	= 100 m/	4									
100	0.778	-144	27.669	111	0.027	35	0.523	-114	0.27	30.2	
200	0.820	-164	14.559	97	0.029	29	0.445	-144	0.42	27.0	
500	0.832	-179	5.885	84	0.035	38	0.435	-166	0.81	22.2	
800	0.833	175	3.691	76	0.048	45	0.435	-173	0.95	18.8	
1000	0.831	172	2.980	71	0.056	51	0.437	-176	1.05	16.0	
1200	0.836	169	2.464	67	0.061	52	0.432	-178	1.11	14.0	
1400	0.829	166	2.121	61	0.072	53	0.447	-180	1.12	12.6	
1600	0.831	164	1.867	58	0.080	54	0.445	179	1.14	11.4	

S₂P - Touchstone

Touchstone file format (*.s2p)

```
! SIEMENS Small Signal Semiconductors
VDS = 3.5 V ID = 15 mA
#GHz S MA R 50
l f
      S11
              S21
                       S12 S22
IGH7 MAG ANG MAG ANG MAG ANG MAG ANG
1.000 0.9800 -18.0 2.230 157.0 0.0240 74.0 0.6900 -15.0
2.000 0.9500 -39.0 2.220 136.0 0.0450 57.0 0.6600 -30.0
3.000 0.8900 -64.0 2.210 110.0 0.0680 40.0 0.6100 -45.0
4.000 0.8200 -89.0 2.230 86.0 0.0850 23.0 0.5600 -62.0
5.000 0.7400 -115.0 2.190 61.0 0.0990 7.0 0.4900 -80.0
6.000 0.6500 -142.0 2.110 36.0 0.1070 -10.0 0.4100 -98.0
     Fmin Gammaopt rn/50
! f
       dB MAG ANG -
! GHz
2.000 1.00 0.72 27 0.84
4.000 1.40 0.64 61 0.58
```


 $\Gamma_{L} = \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}} \quad \Gamma_{S} = \frac{Z_{S} - Z_{0}}{Z_{S} + Z_{0}} \quad \begin{bmatrix} V_{1}^{-} \\ V_{2}^{-} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \cdot \begin{bmatrix} V_{1}^{+} \\ V_{2}^{+} \end{bmatrix}$

 $\Gamma_{L} = \frac{V_{2}^{+}}{V_{2}^{-}} \qquad \qquad V_{1}^{-} = S_{11} \cdot V_{1}^{+} + S_{12} \cdot V_{2}^{+} = S_{11} \cdot V_{1}^{+} + S_{12} \cdot \Gamma_{L} \cdot V_{2}^{-}$ $V_{2}^{-} = S_{21} \cdot V_{1}^{+} + S_{22} \cdot V_{2}^{+} = S_{21} \cdot V_{1}^{+} + S_{22} \cdot \Gamma_{L} \cdot V_{2}^{-}$

 $V_{1}^{-} = S_{11} \cdot V_{1}^{+} + S_{12} \cdot V_{2}^{+} = S_{11} \cdot V_{1}^{+} + S_{12} \cdot \Gamma_{L} \cdot V_{2}^{-}$ $V_{2}^{-} = S_{21} \cdot V_{1}^{+} + S_{22} \cdot V_{2}^{+} = S_{21} \cdot V_{1}^{+} + S_{22} \cdot \Gamma_{L} \cdot V_{2}^{-}$

Power / Matching

 Two ports in which matching influences the power transfer

Signal power

$$\begin{split} \Gamma_{in} &= \frac{V_{1}^{-}}{V_{1}^{+}} = S_{11} + \frac{S_{12} \cdot S_{21} \cdot \Gamma_{L}}{1 - S_{22} \cdot \Gamma_{L}} & \Gamma_{in} = \frac{Z_{in} - Z_{0}}{Z_{in} + Z_{0}} \\ V_{1} &= \frac{V_{S} \cdot Z_{in}}{Z_{S} + Z_{in}} = V_{1}^{+} + V_{1}^{-} = V_{1}^{+} \cdot \left(1 + \Gamma_{in}\right) & V_{1}^{+} = \frac{V_{S}}{2} \frac{\left(1 - \Gamma_{S}\right)}{\left(1 - \Gamma_{S} \cdot \Gamma_{in}\right)} \\ \bullet \quad L2 \qquad P_{in} = \frac{1}{2 \cdot Z_{0}} \cdot \left|V_{1}^{+}\right|^{2} \cdot \left(1 - |\Gamma_{in}|^{2}\right) & P_{L} = \frac{1}{2 \cdot Z_{0}} \cdot \left|V_{2}^{-}\right|^{2} \cdot \left(1 - |\Gamma_{L}|^{2}\right) \\ P_{in} &= \frac{|V_{S}|^{2}}{8 \cdot Z_{0}} \cdot \frac{|1 - \Gamma_{S}|^{2}}{|1 - \Gamma_{S} \cdot \Gamma_{in}|^{2}} \left(1 - |\Gamma_{in}|^{2}\right) \\ V_{2}^{-} &= S_{21} \cdot V_{1}^{+} + S_{22} \cdot V_{2}^{+} = S_{21} \cdot V_{1}^{+} + S_{22} \cdot \Gamma_{L} \cdot V_{2}^{-} & V_{2}^{-} = \frac{S_{21} \cdot V_{1}^{+}}{1 - S_{22} \cdot \Gamma_{L}} \\ P_{L} &= \frac{|V_{1}^{+}|^{2}}{2 \cdot Z_{0}} \cdot \frac{|S_{21}|^{2}}{|1 - S_{22} \cdot \Gamma_{L}|^{2}} \left(1 - |\Gamma_{L}|^{2}\right) & P_{L} = \frac{|V_{S}|^{2}}{8 \cdot Z_{0}} \cdot \frac{|S_{21}|^{2} \cdot \left(1 - |\Gamma_{L}|^{2}\right)}{|1 - S_{22} \cdot \Gamma_{L}|^{2}} \cdot \frac{|1 - \Gamma_{S}|^{2}}{|1 - \Gamma_{S} \cdot \Gamma_{in}|^{2}} \end{split}$$

Signal power

- Signal power $P_{in} = \frac{|V_S|^2}{8 \cdot Z_0} \cdot \frac{|1 - \Gamma_S|^2}{|1 - \Gamma_S \cdot \Gamma_{in}|^2} \left(1 - |\Gamma_{in}|^2\right)$ $P_L = \frac{|V_S|^2}{8 \cdot Z_0} \cdot \frac{|S_{21}|^2 \cdot (1 - |\Gamma_L|^2)}{|1 - S_{22} \cdot \Gamma_L|^2} \cdot \frac{|1 - \Gamma_S|^2}{|1 - \Gamma_S \cdot \Gamma_{in}|^2}$
- Power available from the source

$$P_{av S} = P_{in} \Big|_{\Gamma_{in} = \Gamma_{S}^{*}} = \frac{|V_{S}|^{2}}{8 \cdot Z_{0}} \cdot \frac{|1 - \Gamma_{S}|^{2}}{(1 - |\Gamma_{S}|^{2})}$$

Power available on the load (from the network)

$$P_{av L} = P_L \big|_{\Gamma_L = \Gamma_{out}^*} = \frac{|V_S|^2}{8 \cdot Z_0} \cdot \frac{|S_{21}|^2 \cdot |1 - \Gamma_S|^2}{|1 - S_{11} \cdot \Gamma_S|^2 \cdot (1 - |\Gamma_{out}|^2)}$$

Two-Port Power Gains

Power Gain

$$G = \frac{P_L}{P_{in}} = \frac{|S_{21}|^2 \cdot (1 - |\Gamma_L|^2)}{(1 - |\Gamma_{in}|^2) \cdot |1 - S_{22} \cdot \Gamma_L|^2} \qquad P_{in} = P_{in}(\Gamma_S, \Gamma_{in}(\Gamma_L), S)$$

$$P_L = P_L(\Gamma_S, \Gamma_{in}(\Gamma_L), S)$$

The actual power gain introduced by the amplifier is less important because a higher gain may be accompanied by a decrease in input power (power actually drained from the source)
We prefer to characterize the amplifier effect looking to the power actually delivered to the load in relation to the power available from the source (which is a constant)

Two-Port Power Gains

Available power gain

$$G_{A} = \frac{P_{av L}}{P_{av S}} = \frac{|S_{21}|^{2} \cdot (1 - |\Gamma_{S}|^{2})}{|1 - S_{22} \cdot \Gamma_{L}|^{2} \cdot (1 - |\Gamma_{out}|^{2})}$$
Transducer power gain

$$G_{T} = \frac{P_{L}}{P_{av S}} = \frac{|S_{21}|^{2} \cdot (1 - |\Gamma_{S}|^{2}) \cdot (1 - |\Gamma_{L}|^{2})}{|1 - \Gamma_{S} \cdot \Gamma_{in}|^{2} \cdot |1 - S_{22} \cdot \Gamma_{L}|^{2}}$$

$$\Gamma_{in} = \Gamma_{in} (\Gamma_L)$$

Unilateral transducer power gain

$$G_{TU} = \left|S_{21}\right|^{2} \cdot \frac{1 - \left|\Gamma_{S}\right|^{2}}{\left|1 - S_{11} \cdot \Gamma_{S}\right|^{2}} \cdot \frac{1 - \left|\Gamma_{L}\right|^{2}}{\left|1 - S_{22} \cdot \Gamma_{L}\right|^{2}} \qquad \qquad S_{12} \cong 0 \qquad \Gamma_{in} = S_{11}$$
Input and output can be treated independently

- For an amplifier two-port we are interested in:
 - stability
 - power gain
 - noise (sometimes small signals)
 - linearity (sometimes large signals)

Microwave Amplifiers

For an amplifier two-port we are interested in:

- stability
- power gain
- noise (sometimes small signals)
- linearity (sometimes large signals)

L6 $\Gamma = \Gamma_r + j \cdot \Gamma_i$

$$Z_{in} \qquad \qquad \Gamma_{in} = \Gamma_r + j \cdot \Gamma_i$$

$$r_L = \frac{1 - \Gamma_r^2 - \Gamma_i^2}{\left(1 - \Gamma_r\right)^2 + \Gamma_i^2}$$

- instability
 - $\operatorname{Re}\left\{Z_{in}\right\} < 0 \quad \Leftrightarrow \quad 1 \Gamma_r^2 \Gamma_i^2 < 0 \qquad \qquad \Gamma_r^2 + \Gamma_i^2 > 1 \qquad \left|\Gamma_{in}\right| > 1$
- stability, Z_{in}
 - conditions to be met by Γ_L to achieve (input) stability

$$|S_{in}| < 1$$

 $|S_{11} + \frac{S_{12} \cdot S_{21} \cdot \Gamma_L}{1 - S_{22} \cdot \Gamma_L}| < 1$

similarly Z_{out}

Γ

 conditions to be met by Γ_s to achieve (output) stability

$$|\Gamma_{in}| < 1$$
 $|S_{11} + \frac{S_{12} \cdot S_{21} \cdot \Gamma_L}{1 - S_{22} \cdot \Gamma_L}| < 1$

 We can calculate conditions to be met by Γ_L to achieve stability

$$|\Gamma_{out}| < 1$$
 $|S_{22} + \frac{S_{12} \cdot S_{21} \cdot \Gamma_S}{1 - S_{11} \cdot \Gamma_S}| < 1$

 We can calculate conditions to be met by Γ_s to achieve stability

$$|\Gamma_{in}| < 1$$
 $|S_{11} + \frac{S_{12} \cdot S_{21} \cdot \Gamma_L}{1 - S_{22} \cdot \Gamma_L}| < 1$

The limit between stability/instability

$$|\Gamma_{in}| = 1$$
 $S_{11} + \frac{S_{12} \cdot S_{21} \cdot \Gamma_L}{1 - S_{22} \cdot \Gamma_L} = 1$

 $|S_{11} \cdot (1 - S_{22} \cdot \Gamma_L) + S_{12} \cdot S_{21} \cdot \Gamma_L| = |1 - S_{22} \cdot \Gamma_L|$

• determinant of the S matrix $\Delta = S_{11} \cdot S_{22} - S_{12} \cdot S_{21}$

$$|S_{11} - \Delta \cdot \Gamma_L| = |1 - S_{22} \cdot \Gamma_L|$$
$$|S_{11} - \Delta \cdot \Gamma_L|^2 = |1 - S_{22} \cdot \Gamma_L|^2$$

$$\begin{split} \left|S_{11} - \Delta \cdot \Gamma_{L}\right|^{2} &= \left|1 - S_{22} \cdot \Gamma_{L}\right|^{2} \\ & a \cdot a^{*} = \left|a\right| \cdot e^{j\theta} \cdot \left|a\right| \cdot e^{-j\theta} = \left|a\right|^{2} \\ & \left|a + b\right|^{2} = (a + b) \cdot (a + b)^{*} = (a + b) \cdot \left(a^{*} + b^{*}\right) = \left|a\right|^{2} + \left|b\right|^{2} + a^{*} \cdot b + a \cdot b^{*} \\ \left|S_{11}\right|^{2} + \left|\Delta\right|^{2} \cdot \left|\Gamma_{L}\right|^{2} - \left(\Delta \cdot \Gamma_{L} \cdot S_{11}^{*} + \Delta^{*} \cdot \Gamma_{L}^{*} \cdot S_{11}\right) = 1 + \left|S_{22}\right|^{2} \cdot \left|\Gamma_{L}\right|^{2} - \left(S_{22}^{*} \cdot \Gamma_{L}^{*} + S_{22} \cdot \Gamma_{L}\right) \\ \left(\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}\right) \cdot \Gamma_{L} \cdot \Gamma_{L}^{*} - \left(S_{22} - \Delta \cdot S_{11}^{*}\right) \cdot \Gamma_{L} - \left(S_{22}^{*} - \Delta^{*} \cdot S_{11}\right) \cdot \Gamma_{L}^{*} = \left|S_{11}\right|^{2} - 1 \\ \left|\Gamma_{L} \cdot \Gamma_{L}^{*} - \frac{\left(S_{22} - \Delta \cdot S_{11}^{*}\right) \cdot \Gamma_{L} + \left(S_{22}^{*} - \Delta^{*} \cdot S_{11}\right) \cdot \Gamma_{L}^{*}}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}} = \frac{\left|S_{11}\right|^{2} - 1}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}} + \frac{\left|S_{22} - \Delta \cdot S_{11}^{*}\right|^{2}}{\left(\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}\right)^{2}} \\ \left|\Gamma_{L} - \frac{\left(S_{22} - \Delta \cdot S_{11}^{*}\right)^{*}}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}}\right|^{2} = \frac{\left|S_{11}\right|^{2} - 1}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}} + \frac{\left|S_{22} - \Delta \cdot S_{11}^{*}\right|^{2}}{\left(\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}\right)^{2}} \end{split}$$

Output stability circle (CSOUT)

$$\left|\Gamma_{L} - \frac{\left(S_{22} - \Delta \cdot S_{11}^{*}\right)^{*}}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}}\right| = \left|\frac{S_{12} \cdot S_{21}}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}}\right|$$

$$\left|\Gamma_{L}-C_{L}\right|=R_{L}$$

- We obtain the equation of a circle in the complex plane, which represents the locus of Γ_L for the limit between stability and instability (|Γ_{in}| = 1)
- This circle is the output stability circle (Γ_L)

$$C_{L} = \frac{\left(S_{22} - \Delta \cdot S_{11}^{*}\right)^{*}}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}} \qquad R_{L} = \frac{\left|S_{12} \cdot S_{21}\right|}{\left|\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}\right|}$$

Input stability circle (CSIN)

- Similarly $\begin{vmatrix} S_{22} + \frac{S_{12} \cdot S_{21} \cdot \Gamma_S}{1 - S_{11} \cdot \Gamma_S} \end{vmatrix} = 1$
- We obtain the equation of a circle in the complex plane, which represents the locus of Γ_s for the limit between stability and instability (|Γ_{out}| = 1)
- This circle is the input stability circle (Γ_s)

$$C_{S} = \frac{\left(S_{11} - \Delta \cdot S_{22}^{*}\right)^{*}}{\left|S_{11}\right|^{2} - \left|\Delta\right|^{2}} \qquad R_{S} = \frac{\left|S_{12} \cdot S_{21}\right|}{\left|\left|S_{11}\right|^{2} - \left|\Delta\right|^{2}\right|}$$

Output stability circle (CSOUT)

- The output stability circle represents the locus of Γ_{L} for the limit between stability and instability ($|\Gamma_{in}| = 1$)
- The circle divides the complex planes in two areas, the inside and the outside of the circle
- The two areas will represent the locus of Γ_{L} for stability ($|\Gamma_{in}|<1$) / instability ($|\Gamma_{in}|>1$)
Output stability circle (CSOUT)

Two cases possible: (a) stable outside/ (b) stable inside

Output stability circle (CSOUT)

- Identification of the stability / instability regions
 - The center of the Smith Chart in Γ_L complex plane corresponds to $\Gamma_L = o$
 - Input reflection coefficient

$$\Gamma_{in} = S_{11} + \frac{S_{12} \cdot S_{21} \cdot \Gamma_L}{1 - S_{22} \cdot \Gamma_L} \qquad \Gamma_{in} \Big|_{\Gamma_L = 0} = S_{11} \qquad \left| \Gamma_{in} \right|_{\Gamma_L = 0} = |S_{11}|$$

 A decision can be made based on |S11| value and on the position of the center of the Smith chart (origin of the complex plane) relative to the circle

Identification of the stability / instability regions

Output stability circle

- |S11| < 1 → the center of the Smith chart on which Γ_L is represented is a stable point, so it's placed in the stability region (most often situation)
- |S11| > 1 → the center of the Smith chart on which Γ_L is represented is a unstable point, so it's placed in the instability region
- Input stability circle
 - |S22| < 1 → the center of the Smith chart on which Γ_s is represented is a stable point, so it's placed in the stability region (most often situation)
 - |S22| > 1 → the center of the Smith chart on which Γ_s is represented is a unstable point, so it's placed in the instability region

Example

- ATF-34143 at Vds=3V Id=20mA.
- @5GHz
 - S11 = 0.64∠139°
 - S12 = 0.119∠-21°
 - S21 = 3.165 ∠16°
 - S22 = 0.22 ∠146°

 $\begin{cases} S_{11} = 0.64 \angle 139^{\circ} \\ S_{11} = 0.64 \cdot \cos 139^{\circ} + j \cdot 0.64 \cdot \sin 139 \\ S_{11} = -0.4830 + j \cdot 0.4199 \end{cases}$

	!ATF-34143 !S-PARAMETERS at Vds=3V Id=20mA. LAST UPDATED 01-29-99
	# ghz s ma r 50
►	2.0 0.75 -126 6.306 90 0.088 23 0.26 -120 2.5 0.72 -145 5.438 75 0.095 15 0.25 -140 3.0 0.69 -162 4.762 62 0.102 7 0.23 -156 4.0 0.65 166 3.806 38 0.111 -8 0.22 174 5.0 0.64 139 3.165 16 0.119 -21 0.22 146
	6.0 0.65 114 2.706 -5 0.125 -35 0.23 118 7.0 0.66 89 2.326 -27 0.129 -49 0.25 91 8.0 0.69 67 2.017 -47 0.133 -62 0.29 67 9.0 0.72 48 1.758 -66 0.135 -75 0.34 46 !FREQ Fopt GAMMA OPT RN/Zo
9°	!GHZ dB MAG ANG - 2.0 0.19 0.71 66 0.09 2.5 0.23 0.65 83 0.07 3.0 0.29 0.59 102 0.06 4.0 0.42 0.51 138 0.03 5.0 0.54 0.45 174 0.03 6.0 0.67 0.42 -151 0.05
	7.0 0.79 0.42 -118 0.10

8.0 0.92 0.45 -88 0.18 9.0 1.04 0.51 -63 0.30 10.0 1.16 0.61 -43 0.46

Example

• ATF-34143 ADS ADS at Vds=3V S(1,1) S(2,2) Id=20mA. freq (500.0MHz to 18.00GHz) freq (500.0MHz to 18.00GHz) ADS ADS S(2,1) S(1,2) -0.15 -0.10 -0.05 0.00 0.05 0.10 -12 -10 10 12 -2 -8 -6 6 8

freq (500.0MHz to 18.00GHz)

freq (500.0MHz to 18.00GHz)

0.15

Solution + region identification

- S parameters
 - S11 = -0.483+0.42·j
 - S12 = 0.111-0.043·j
 - S21 = 3.042+0.872·j
 - S22 = -0.182+0.123·j

|S11|=0.64 < 1
|
$$C_1$$
| < R_1 , 0∈CSOUT

$$C_{L} = \frac{\left(S_{22} - \Delta \cdot S_{11}^{*}\right)^{*}}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}} = 3.931 - 0.897 \cdot j$$
$$\left|C_{L}\right| = 4.032$$
$$R_{L} = \frac{\left|S_{12} \cdot S_{21}\right|}{\left|S_{22} - S_{21}\right|^{2}} = 4.891$$

 $\left|\left|S_{22}\right|^{2}-\left|\Delta\right|^{2}\right|$

- The center of the Smith chart is placed inside the output stability circle (o∈CSOUT) and is a stable point (|S11|<1)</p>
 - the inside of the output stability circle stability region
 - the outside of the output stability circle instability region

Solution + region identification

- S parameters
 - S11 = -0.483+0.42·j
 - S12 = 0.111-0.043·j
 - S21 = 3.042+0.872·j
 - S22 = -0.182+0.123 j
- $|S_{22}| = 0.22 < 1$ |C_S| > R_S, 0∉CSIN

$$C_{S} = \frac{\left(S_{11} - \Delta \cdot S_{22}^{*}\right)^{*}}{\left|S_{11}\right|^{2} - \left|\Delta\right|^{2}} = -1.871 - 1.265 \cdot j$$
$$\left|C_{S}\right| = 2.259$$
$$R_{S} = \frac{\left|S_{12} \cdot S_{21}\right|}{\left|\left|S_{11}\right|^{2} - \left|\Delta\right|^{2}\right|} = 1.325$$

- The center of the Smith chart is placed outside the input stability circle (o∉CSIN) and is a stable point (| S22 | < 1)</p>
 - the outside of the input stability circle stability region
 - the inside of the input stability circle instability region

3D representation of $|\Gamma_{in}|$, $|\Gamma_{out}|$

3D representation of $|\Gamma_{in}|$, $|\Gamma_{out}|$

3D representation of $|\Gamma_{in}|$, $|\Gamma_{out}|$, $|\Gamma|=1$

• $|\Gamma| = 1 \rightarrow \log_{10} |\Gamma| = 0$, the intersection with the plane z = 0 is a circle

Contour map/lines

© 2011 Encyclopædia Britannica, Inc.

106°

108°

110°

114°

116° E

Contour lines of $\log_{10} |\Gamma_{in}|$

Contour lines of $\log_{10} |\Gamma_{out}|$

CSIN, CSOUT

Several possible positioning

Several possible positioning

(Quite) Rare positioning

Stability

- Unconditional stability: the circuit is unconditionally stable if |Γ_{in}|<1 and |Γ_{out}|<1 for any passive impedance of the load/source
 Conditional stability: the circuit is conditionally stable if |Γ_{in}|<1 and |Γ_{out}|<1 only for some passive impedance of the load/source
 - passive impedance of the load/source <-> interior of the Smith Chart (radius 1 circle in the complex plane)

Unconditional stability

- The two-port is unconditionally stable if either:
 - The stability circle is disjoint with the Smith Chart (exterior to the Chart) and the stable region is outside the circle
 - The stability circle encloses the entire Smith Chart and the stable region is inside the circle
- One mandatory condition for unconditional stability is |S11| < 1 (CSOUT) or |S22| < 1 (CSIN) if in at least one point the two-port is not stable then it cannot be unconditionally stable
 Mathematically ·

$$\begin{cases} ||C_L| - R_L| > 1 \\ |S_{11}| < 1 \end{cases} \qquad \begin{cases} ||C_S| - R_S| > 1 \\ |S_{22}| < 1 \end{cases}$$

Tests for Unconditional Stability

- Useful for wide frequency range analysis
- It is not enough to check the stability only at the operating frequencies
 - we must obtain stable operation for chosen Γ_L and Γ_S at any frequency

Circles in wide frequency range

Rollet's condition

$$K = \frac{1 - |S_{11}|^2 - |S_{22}|^2 + |\Delta|^2}{2 \cdot |S_{12} \cdot S_{21}|}$$

$$\Delta = S_{11} \cdot S_{22} - S_{12} \cdot S_{21}$$

- The two-port is unconditionally stable if:
- two conditions are simultaneously satisfied:
 - K > 1
 - |∆| < 1</p>
- together with the implicit conditions:
 - |S11| < 1</p>
 - |S22| < 1

$$K = \frac{1 - |S_{11}|^2 - |S_{22}|^2 + |\Delta|^2}{2 \cdot |S_{12} \cdot S_{21}|} > 1$$

$$\left|\Delta\right| = \left|S_{11} \cdot S_{22} - S_{12} \cdot S_{21}\right| < 1$$

μ Criterion

 Rollet's condition cannot be used to compare the relative stability of two or more devices because it involves constraints on two separate parameters, K and Δ

$$\mu = \frac{1 - \left|S_{11}\right|^2}{\left|S_{22} - \Delta \cdot S_{11}^*\right| + \left|S_{12} \cdot S_{21}\right|} > 1$$

- The two-port is unconditionally stable if:
 - µ>1
- together with the implicit conditions:
 - S11 < 1</p>
 - |S22| < 1
- In addition, it can be said that larger values of μ imply greater stability
 - μ is the distance from the center of the Smith Chart to the closest output stability circle

μ' Criterion

 Dual parameter to µ, determined in relation to the input stability circles

$$\mu' = \frac{1 - \left|S_{22}\right|^2}{\left|S_{11} - \Delta \cdot S_{22}^*\right| + \left|S_{12} \cdot S_{21}\right|} > 1$$

- The two-port is unconditionally stable if:
 - μ'>1
- together with the implicit conditions:
 - S11 < 1</p>
 - |S22| < 1
- In addition, it can be said that larger values of μ' imply greater stability
 - μ' is the distance from the center of the Smith Chart to the closest input stability circle

Rollet's condition

ATF-34143 at Vds=3V Id=20mA.
 @0.5÷18GHz

μ Criterion

μ' Criterion

Stability

- ATF-34143 at Vds=3V Id=20mA.
- @0.5÷18GHz
- unconditionally stable for f > 6.31GHz

Stabilization of two-port

- Unconditional stability in a wide frequency range has some important advantages
 - Ex: We can use ATF 34143 to design a (conditionally) stable amplifier at 5GHz, but this design is useless if the amplifier oscillates at 500MHz (μ≈0.1)
- The minimal requirement when working with conditionally stable devices is to check stability at several frequencies over the operating bandwidth and outside the bandwidth
- Unconditional stability can be forced by inserting series/shunt resistors at two-port's input/output (with loss of gain!)

Input series resistor

ADS, $Rs = 2\Omega$

Input series resistor

Rs = 2Ω
K = 1.008, MAG = 13.694dB @ 5GHz
no stabilization, K = 0.886, MAG = 14.248dB @ 5GHz

Input shunt resistor

ADS, $Rp = 90\Omega$

Input shunt resistor

Output series/shunt resistor

- The procedure can be applied similarly at the output (finding g/r circles tangent to CSOUT)
- From previous examples, resistive loading at the input has a positive effect over output stability and vice versa (resistive loading at the output, effect over input stability)

- Negative effect over the power gain
 - we must check MAG/MSG while designing resistive loading
- Negative effect over the noise (debated next)
- We can choose one of the 4 possibilities or a combination which offers better results (depending on transistor, application etc.)
- We can use frequency selective loading
 - Ex: RL, RC circuits which sacrifice performance only when needed to improve stability and have no effect at frequencies where the device is already stable
- It might be possible (and should be checked) that stability is improved as an effect of parasitic elements of biasing circuits (bypass capacitors and RF chokes)

+ Term Term1 Num=1 Z=50 Ohm R R1 R=89.18 0	R R2 Dhm R=6.82 Ohm	SnP SnP1 File="D:\users\s2	p\f341433a.s2p" _	Term Term2 Num=2 Z=50 Ohm
			· · · · · · · · · · · · · · · · · · ·	2
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · ·	
		1 1 1 N N N		
S-PARAMETERS				e o o e e
S. Dorom	MaxGain	Mu a	StabFact	a a a conce
SP1	MaxGain	Mu · · ·	StabFact	
Start=0.5 GHz	MAG a second	Mu1 a a	in Kanada a a	2 2 2 2 <i>2</i> 2
Stop=10.0 GHz Step=0.1 GHz	MAG=max_ga	n(S) Mu=mu(S)	K=stab_fact(S)	

freq, GHz

freq, GHz

- Microwave and Optoelectronics Laboratory
- http://rf-opto.etti.tuiasi.ro
- rdamian@etti.tuiasi.ro