Lecture 8
2022/2023
Microwave Devices and Circuits
for Radiocommunications

2022/2023

2C/1L, MDCR

- Attendance at minimum 7 sessions (course or laboratory)
- Lectures- associate professor Radu Damian
- Tuesday 12-14, Online, P8
- E-50\% final grade
- problems + (2p atten. lect.) + (3 tests) + (bonus activity)
- first test L1: 21-28.02.2023 (t2 and t3 not announced, lecture)
" 3att.=+0.5p
- all materials/equipments authorized

2022/2023

- Laboratory - associate professor Radu Damian
- Tuesday 08-12, II. 13 / (08:10)
- L-25\% final grade
- ADS, 4 sessions
- Attendance + personal results
- P - 25\% final grade
- ADS, 3 sessions (-1? 21.02.2022)
" personal homework

Materials

- http://rf-opto.etti.tuiasi.ro

© Laboratorul de Microunde si Op: $\times+$
 $\leftarrow \rightarrow$ C (i) Not secure | rf-opto.etti.tuiasi.ro/microwave_cd.php?chg_lang=0
 Main Courses Master Staff Research Students Admin
 Microwave CD Optical Communications Optoelectronics Internet Antennas Practica Networks Educational soffware

Microwave Devices and Circuits for Radiocommunications (English)
Course: MDCR (2017-2018)
Course Coordinator: Assoc.P. Dr. Radu-Florin Damian
Code: EDOS412T
Discipline Type: DOS; Alternative, Specialty
Enrollment Year: 4, Sem. 7
Activities
Course: Instructor: Assoc.P. Dr. Radu-Florin Damian, 2 Hours/Week, Specialization Section, Timetable: Laboratory: Instructor: Assoc.P. Dr. Radu-Florin Damian, 1 Hours/Week, Group, Timetable:
Evaluation
Type: Examen
A: 50%, (Test/Colloquium)
B: 25\%, (Seminary/Laboratory/Project Activity)
D: 25%, (Homework/Specialty papers)
*林English I D Romana I

Grades

Aggregate Results
Attendance
Course
Laboratory.
Lists
Bonus-uri acumulate (final). Studenti care nu pot intra in examen
Materials
Course Slides
MDCR Lecture 1 (pdf, 5.43 MB , en, ma
MDCR Lecture 2 (pdf, 3.67 MB , en,
MDCR Lecture 3 (pdf, 4.76 MB , en
MDCR Lecture 4 (pdf, 5.58 MB, en, 2)

Online Exams

In order to participate at online exams you must get ready following

Materials

- RF-OPTO
- http://rf-opto.etti.tuiasi.ro
- David Pozar, "Microwave Engineering", Wiley; 4th edition, 2011
- 1 exam problem \leftarrow Pozar
- Photos
- sent by email/online exam
- used at lectures/laboratory

Access

Not customized

Acceseaza ca acest student

Nume

Note obtimate

Disciplina	Tip	Data	Descriere	Nota	Puncte	Obs.
TW	Tehnologii Web					
	N	$17 / 01 / 2014$	Nota finala	10	-	
	A	$17 / 01 / 2014$	Colocviu Tehnologii Web 2013/2014	10	7.55	
	B	$17 / 01 / 2014$	Laborator Tehnologii Web 2013/2014	9	-	
	D	$17 / 01 / 2014$	Tema Tehnologii Web 2013/2014	9	-	

Online

- access to online exams requires the password received by email

Online

- access email/password

Main	Courses	Master	Staff	Resear
Grades	Student List	Exams	Photos	
POPESCU GOPO ION				
Fotografia nu exista		Date:		
		Grupa	5700 (2019/2020)	
		Specializarea	Inginerie electronica sitelec	
		Marca	7000000	

Password

received by email

Important message from RF-OPTO

Inbox x

Radu-Florin Damian
to me, POPESCU -
$\overline{\text { }}_{\text {A }}$ Romanian * $>$ English * Translate message

Laboratorul de Microunde si Optoelectronica
Facultatea de Electronica, Telecomunicatii si Tehnologia Informatiei
Universitatea Tehnica "Gh. Asachi" las

In atentia: POPESCU GOPO ION
Parola pentru a accesa examenele pe server-ul rf-opto este Parola:

Identificati-va pe server, cu parola, cat mai rapid, pentru confirmare
Memorati acest mesaj intr-un loc sigur, pentru utilizare ulterioara

Attention: POPESCU GOPO ION
The password to access the exams on the rf-opto server is Password:

Login to the server, with this password, as soon as possible, for confirmation
Save this message in a safe place for later use

Attention: POPESCU GOPO ION
The password to access the exams on the rf-opto server is Password:

Login to the server, with this password, as soon as possible, for confirmation.
Save this message in a safe place for later use

Online exam manual

- The online exam app used for:
=-lectures (attendance)
- laboratory
- project
-examinations

Materials

Other data

Manual examen on-line ($p d f, 2.65$ yB, ro, II) Simulare Examen (video) (mp4, 65) 12 MB, ro, II)

Microwave Devices and Circuits (Enqlis

Examen online

- always against a timetable
- long period (lecture attendance/laboratory results)
"-short period (tests: 15min, exam: 2h)
-

Announcement

This is a "fake" exam, introduced to familiarize you with the server interface and to perform the necessary actions during an exam: thesis scan, selfie, use email for cc

Server Time

All exame aro hased on the server's time zone (it may be different from local time). For reference time on the server is now:

Online results submission

many numerical values／files

Sixam	net		Reminem																		
					${ }^{\frac{85}{585} 5}$	14833	15588	20212	18935	1809	3029	1 15．19	79.9	${ }^{37}$	689						
溉		$\frac{5}{50}$		$\frac{85}{\frac{85}{522} .}$		2587	1355	${ }^{3,464}$	3579	5558	22212	10.6	。	。		。					
		$\underbrace{\substack{\text { cise }}}_{\text {cose }}$					－	\bigcirc	。	－	\bigcirc	\bigcirc		－							
既						50	so	50	50	50	50	50									
						${ }_{18602}$	150.5	${ }_{1828} 18$	1335	92.12	121.6	14.48		35.19							
	$\frac{85}{\substack{\text { sicis．} \\ 2020}}$	$\xrightarrow{\frac{8}{\text { che }} \text { S．}}$			${ }_{\text {cosem }}^{\text {che }}$	1122	80． 8	202	1008	135.	1837	157.6									
										${ }^{7271}$				36.1							
							1225		${ }^{323}$	5436											
													2.05	33.6							

Online results submission

- many numerical values

Online results submission

Grade = Quality of the work +

 + Quality of the submissionTEM transmission lines

Course Topics

- Transmission lines
- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
-Oscillators and mixers-?

The lossless line

$$
\begin{aligned}
& V(z)=V_{0}^{+} e^{-j \cdot \beta \cdot z}+V_{0}^{-} e^{j \cdot \beta \cdot z} \\
& I(z)=\frac{V_{0}^{+}}{Z_{0}} e^{-j \cdot \beta \cdot z}-\frac{V_{0}^{-}}{Z_{0}} e^{j \cdot \beta \cdot z} \\
& Z_{L}=\frac{V(0)}{I(0)} \quad Z_{L}=\frac{V_{0}^{+}+V_{0}^{-}}{V_{0}^{+}-V_{0}^{-}} \cdot Z_{0}
\end{aligned}
$$

- voltage reflection coefficient
$\Gamma=\frac{V_{0}^{-}}{V_{0}^{+}}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}$
- Z_{o} real

The lossless line

$$
V(z)=V_{0}^{+} \cdot\left(e^{-j \cdot \beta \cdot z}+\Gamma \cdot e^{j \cdot \beta \cdot z}\right) \quad I(z)=\frac{V_{0}^{+}}{Z_{0}} \cdot\left(e^{-j \cdot \beta \cdot z}-\Gamma \cdot e^{j \cdot \beta \cdot z}\right)
$$

- time-average Power flow along the line
$P_{\text {avg }}=\frac{1}{2} \cdot \operatorname{Re}\left\{V(z) \cdot I(z)^{*}\right\}=\frac{1}{2} \cdot \frac{\left|V_{0}^{+}\right|^{2}}{Z_{0}} \cdot \operatorname{Re}\{1-\Gamma^{*} \cdot \underbrace{e^{-2 j \cdot \beta \cdot z}+\Gamma \cdot e^{2 j \cdot \beta \cdot z}}_{\left(z-z^{*}\right)=\operatorname{Im}}-|\Gamma|^{2}\}$
- Total power delivered to the load = Incident power - "Reflected" power
- Return "Loss" [dB] \quad RL $=-20 \cdot \log |\Gamma| \quad[\mathrm{dB}]$

The lossless line

- input impedance of a length \boldsymbol{l} of transmission line with characteristic impedance \boldsymbol{Z}_{0}, loaded with an arbitrary impedance \boldsymbol{Z}_{L}

General theory
Microwave Network Analysis

Scattering matrix - S

- Scattering parameters

- $V_{2}^{+}=0$ meaning: port 2 is terminated in matched load to avoid reflections towards the port

$$
\Gamma_{2}=0 \rightarrow V_{2}^{+}=0
$$

Scattering matrix - S

$$
\begin{aligned}
& {\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right] \cdot\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]} \\
& S_{11}=\left.\frac{b_{1}}{a_{1}}\right|_{a_{2}=0} \quad S_{22}=\left.\frac{b_{2}}{a_{2}}\right|_{a_{1}=0}
\end{aligned}
$$

- S_{11} and S_{22} are reflection coefficients at ports 1 and 2 when the other port is matched

Scattering matrix - S

- S_{21} si S_{12} are signal amplitude gain when the other port is matched

Scattering matrix - S

- a,b
" information about signal power AND signal phase
- $S_{i j}$
- network effect (gain) over signal power including phase information

Impedance Matching
The Smith Chart

The Smith Chart

The Smith Chart

Impedance matching
Impedance Matching with lumped elements (L Networks)

Course Topics

- Transmission lines
- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
-Oscillators and mixers-?

The Smith Chart, reflection coefficient, impedance matching

Matching, series reactance

$$
\begin{aligned}
& z_{L}=r_{L}+j \cdot x_{L} \\
& z_{\text {in }}=r_{L}+j \cdot\left(x_{L}+x_{1}\right) \\
& r_{\text {in }}=r_{L}
\end{aligned}
$$

- Match can be obtained if and only if $r_{L}=1$
- we compensate the reactive part of the load

$$
j \cdot x_{1}=-j \cdot x_{L}
$$

Smith chart, $\mathrm{r}=1$ and $\mathrm{g}=1$

Matching with 2 reactive elements (L Networks)

- Two steps matching
- first reactive element moves the reflection coefficient on the circle $r_{L}=1 / g_{L}=1$
- second element compensates the remaining reactance and achieves the impedance match

series $C_{\text {, }}$ shunt $C /$ shunt C, series C

Forbidden area for current network

Matching with 2 reactive elements (L Networks)

Impedance Matching
Impedance Matching with Stubs

Smith chart, $\mathrm{r}=1$ and $\mathrm{g}=1$

Single stub tuning

- Shunt Stub

Single stub tuning

- Series Stub
- difficult to realize in single conductor line technologies (microstrip)

Analytical solutions

Exam / Project

Case 1, Shunt Stub

- Shunt Stub

Analytical solution, usage

$\cos (\varphi+2 \theta)=-\left|\Gamma_{S}\right|$
$\Gamma_{s}=0.593 \angle 46.85^{\circ}$

$$
\theta_{s p}=\beta \cdot l=\tan ^{-1} \frac{\bar{\mp} 2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}
$$

$\left|\Gamma_{S}\right|=0.593 ; \quad \varphi=46.85^{\circ}$

$$
\cos (\varphi+2 \theta)=-0.593 \Rightarrow(\varphi+2 \theta)= \pm 126.35^{\circ}
$$

- The sign (+/-) chosen for the series line equation imposes the sign used for the shunt stub equation
" "+" solution \downarrow

$$
\begin{align*}
& \left(46.85^{\circ}+2 \theta\right)=+126.35^{\circ} \quad \theta=+39.7^{\circ} \quad \operatorname{Im} y_{S} \\
& \theta_{s p}=\tan ^{-1}\left(\operatorname{Im} y_{S}\right)=-55.8^{\circ}\left(+180^{\circ}\right) \rightarrow \theta_{s p}=124.2^{\circ}
\end{align*}
$$

" "-" solution \downarrow

$$
\left(46.85^{\circ}+2 \theta\right)=-126.35^{\circ} \quad \theta=-86.6^{\circ}\left(+180^{\circ}\right) \rightarrow \theta=93.4^{\circ}
$$

$$
\operatorname{Im} y_{S}=\frac{+2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}=+1.472 \quad \theta_{s p}=\tan ^{-1}\left(\operatorname{Im} y_{S}\right)=55.8^{\circ}
$$

Analytical solution, usage

- We choose one of the two possible solutions
- The sign (+/-) chosen for the series line equation imposes the sign used for the shunt stub equation

$$
\begin{array}{ll}
l_{1}=\frac{39.7^{\circ}}{360^{\circ}} \cdot \lambda=0.110 \cdot \lambda & l_{1}=\frac{93.4^{\circ}}{360^{\circ}} \cdot \lambda=0.259 \cdot \lambda \\
l_{2}=\frac{124.2^{\circ}}{360^{\circ}} \cdot \lambda=0.345 \cdot \lambda & l_{2}=\frac{55.8^{\circ}}{360^{\circ}} \cdot \lambda=0.155 \cdot \lambda
\end{array}
$$

Case 2, Series Stub

- Series Stub
- difficult to realize in single conductor line technologies (microstrip)

Analytical solution, usage

$$
\cos (\varphi+2 \theta)=\left|\Gamma_{S}\right|
$$

$$
\theta_{s s}=\beta \cdot l=\cot ^{-1} \frac{\mp 2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}
$$

$\Gamma_{S}=0.555 \angle-29.92^{\circ}$

$$
\cos (\varphi+2 \theta)=0.555 \Rightarrow(\varphi+2 \theta)= \pm 56.28^{\circ}
$$

- The sign (+/-) chosen for the series line equation imposes the sign used for the series stub equation
- "+" solution \downarrow

$$
\begin{aligned}
& \text { "+" solution } \downarrow \\
& \left(-29.92^{\circ}+2 \theta\right)=+56.28^{\circ} \quad \theta=43.1^{\circ} \quad \operatorname{Im} z_{S}=\frac{\stackrel{\star}{ }=2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}=+1.335 \\
& \theta_{s s}=-\cot ^{-1}\left(\operatorname{Im} z_{S}\right)=-36.8^{\circ}\left(+180^{\circ}\right) \rightarrow \theta_{s s}=143.2^{\circ}
\end{aligned}
$$

- "_" solution
$\left(-29.92^{\circ}+2 \theta\right)=-56.28^{\circ} \quad \theta=-13.2^{\circ}\left(+180^{\circ}\right) \rightarrow \theta=166.8^{\circ}$

$$
\operatorname{Im} z_{S}=\frac{\searrow-2 \cdot\left|\Gamma_{S}\right|}{\sqrt{1-\left|\Gamma_{S}\right|^{2}}}=-1.335 \quad \theta_{s s}=-\cot ^{-1}\left(\operatorname{Im} z_{S}\right)=36.8^{\circ}
$$

Analytical solution, usage

We choose one of the two possible solutions

- The sign (+/-) chosen for the series line equation imposes the sign used for the series stub equation

$$
\begin{aligned}
& l_{1}=\frac{43.1^{\circ}}{360^{\circ}} \cdot \lambda=0.120 \cdot \lambda \\
& l_{2}=\frac{143.2^{\circ}}{360^{\circ}} \cdot \lambda=0.398 \cdot \lambda
\end{aligned}
$$

$$
l_{1}=\frac{166.8^{\circ}}{360^{\circ}} \cdot \lambda=0.463 \cdot \lambda
$$

$$
l_{2}=\frac{36.8^{\circ}}{360^{\circ}} \cdot \lambda=0.102 \cdot \lambda
$$

Impedance Matching with Stubs

Microwave Amplifiers

Microwave Amplifiers

S parameters for transistors

Amplifier as two-port

- Charaterized with S parameters
- normalized at Zo (implicit 50 Ω)
- Datasheets: S parameters for specific bias conditions

Datasheets

NE46100

VCE = 5 V , IC $=50 \mathrm{~mA}$

FREQUENCY (MHz)	S 11		S21		S 12		S 22		K	MAG ${ }^{2}$ (dB)
	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG		
100	0.778	-137	26.776	114	0.028	30	0.555	-102	0.16	29.8
200	0.815	-159	14.407	100	0.035	29	0.434	-135	0.36	26.2
500	0.826	-177	5.855	84	0.040	38	0.400	-162	0.75	21.7
800	0.827	176	3.682	76	0.052	43	0.402	-169	0.91	18.5
1000	0.826	173	2.963	71	0.058	47	0.405	-172	1.02	16.3
1200	0.825	170	2.441	66	0.064	47	0.412	-174	1.08	14.0
1400	0.820	167	2.111	61	0.069	47	0.413	-176	1.17	12.4
1600	0.828	165	1.863	57	0.078	54	0.426	-177	1.15	11.4
1800	0.827	162	1.671	53	0.087	50	0.432	-178	1.14	10.6
2000	0.828	159	1.484	49	0.093	50	0.431	-180	1.17	9.5
2500	0.822	153	1.218	39	0.11	48	0.462	177	1.18	7.8
3000	0.818	148	1.010	30	0.135	46	0.490	174	1.16	6.3
3500	0.824	142	0.876	21	0.147	44	0.507	170	1.16	5.3
4000	0.812	137	0.762	13	0.168	38	0.535	167	1.14	4.3

Vce $=\mathbf{5 V}$, $\mathrm{Ic}=100 \mathrm{~mA}$

100	0.778	-144
200	0.820	-164
500	0.832	-179
800	0.833	175
1000	0.831	172
1200	0.836	169
1400	0.829	166
1600	0.831	164

27.669	111
14.559	97
5.885	84
3.691	76
2.980	71
2.464	67
2.121	61
1.867	58

0.027
0.029
0.035
0.048
0.056
0.061
0.072
0.080
0.523
0.445
0.435
0.435
0.437
0.432
0.447
0.445

0.27	30.2
0.42	27.0
0.81	22.2
0.95	18.8
1.05	16.0
1.11	14.0
1.12	12.6
1.14	11.4

S2P - Touchstone

- Touchstone file format (*.s2p)

```
! SIEMENS Small Signal Semiconductors
! VDS = 3.5 V ID = 15 mA
#GHz S MA R 50
!f S11 S21 S12 S22
!GHz MAG ANG MAG ANG MAG ANG MAG ANG
1.000 0.9800 -18.0 2.230 157.0 0.0240 74.0 0.6900-15.0
2.000 0.9500 -39.0 2.220 136.0 0.0450 57.0 0.6600-30.0
3.000 0.8900 -64.0 2.210 110.0 0.0680 40.0 0.6100-45.0
4.000 0.8200 -89.0 2.230 86.0 0.0850 23.0 0.5600-62.0
5.000 0.7400-115.0 2.190 61.0 0.0990 7.0 0.4900-80.0
6.000 0.6500-142.0 2.110
!
! f Fmin Gammaopt rn/50
!GHz dB MAG ANG -
2.000}1.000.72 27 0.8
4.000}1.400.64\quad61\quad0.5
```


Amplifier as two-port

$\Gamma_{L}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} \quad \Gamma_{S}=\frac{Z_{S}-Z_{0}}{Z_{S}+Z_{0}} \quad\left[\begin{array}{c}V_{1}^{-} \\ V_{2}^{-}\end{array}\right]=\left[\begin{array}{ll}S_{11} & S_{12} \\ S_{21} & S_{22}\end{array}\right] \cdot\left[\begin{array}{c}V_{1}^{+} \\ V_{2}^{+}\end{array}\right]$
$\Gamma_{L}=\frac{V_{2}^{+}}{V_{2}^{-}}$

$$
\begin{aligned}
& V_{1}^{-}=S_{11} \cdot V_{1}^{+}+S_{12} \cdot V_{2}^{+}=S_{11} \cdot V_{1}^{+}+S_{12} \cdot \Gamma_{L} \cdot V_{2}^{-} \\
& V_{2}^{-}=S_{21} \cdot V_{1}^{+}+S_{22} \cdot V_{2}^{+}=S_{21} \cdot V_{1}^{+}+S_{22} \cdot \Gamma_{L} \cdot V_{2}^{-}
\end{aligned}
$$

Amplifier as two-port

$V_{1}^{-}=S_{11} \cdot V_{1}^{+}+S_{12} \cdot V_{2}^{+}=S_{11} \cdot V_{1}^{+}+S_{12} \cdot \Gamma_{L} \cdot V_{2}^{-}$

$$
V_{2}^{-}=S_{21} \cdot V_{1}^{+}+S_{22} \cdot V_{2}^{+}=S_{21} \cdot V_{1}^{+}+S_{22} \cdot \Gamma_{L} \cdot V_{2}^{-}
$$

$$
\Gamma_{i n}=\frac{V_{1}^{-}}{V_{1}^{+}}=S_{11}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{L}}{1-S_{22} \cdot \Gamma_{L}}
$$

similarly

$$
\Gamma_{\text {out }}=\frac{V_{2}^{-}}{V_{2}^{+}}=S_{22}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{S}}{1-S_{11} \cdot \Gamma_{S}}
$$

Amplifier as two-port

Power / Matching

- Two ports in which matching influences the power transfer

Signal power

$$
\begin{aligned}
& \Gamma_{i n}=\frac{V_{1}^{-}}{V_{1}^{+}}=S_{11}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{L}}{1-S_{22} \cdot \Gamma_{L}} \\
& V_{1}=\frac{V_{S} \cdot Z_{\text {in }}}{Z_{S}+Z_{\text {in }}}=V_{1}^{+}+V_{1}^{-}=V_{1}^{+} \cdot\left(1+\Gamma_{\text {in }}\right) \\
& V_{1}^{+}=\frac{V_{S}}{2} \frac{\left(1-\Gamma_{S}\right)}{\left(1-\Gamma_{S} \cdot \Gamma_{i n}\right)} \\
& \text { - L2 } \quad P_{\text {in }}=\frac{1}{2 \cdot Z_{0}} \cdot\left|V_{1}^{+}\right|^{2} \cdot\left(1-\left|\Gamma_{\text {in }}\right|^{2}\right) \quad P_{L}=\frac{1}{2 \cdot Z_{0}} \cdot\left|V_{2}^{-}\right|^{2} \cdot\left(1-\left|\Gamma_{L}\right|^{2}\right) \\
& P_{i n}=\frac{\left|V_{S}\right|^{2}}{8 \cdot Z_{0}} \cdot \frac{\left|1-\Gamma_{S}\right|^{2}}{\left|1-\Gamma_{S} \cdot \Gamma_{i n}\right|^{2}}\left(1-\left|\Gamma_{i n}\right|^{2}\right) \\
& V_{2}^{-}=S_{21} \cdot V_{1}^{+}+S_{22} \cdot V_{2}^{+}=S_{21} \cdot V_{1}^{+}+S_{22} \cdot \Gamma_{L} \cdot V_{2}^{-} \quad V_{2}^{-}=\frac{S_{21} \cdot V_{1}^{+}}{1-S_{22} \cdot \Gamma_{L}} \\
& P_{L}=\frac{\left|V_{1}^{+}\right|^{2}}{2 \cdot Z_{0}} \cdot \frac{\left|S_{21}\right|^{2}}{\left|1-S_{22} \cdot \Gamma_{L}\right|^{2}}\left(1-\left|\Gamma_{L}\right|^{2}\right) \quad P_{L}=\frac{\left|V_{S}\right|^{2}}{8 \cdot Z_{0}} \cdot \frac{\left|S_{21}\right|^{2} \cdot\left(1-\left|\Gamma_{L}\right|^{2}\right)}{\left|1-S_{22} \cdot \Gamma_{L}\right|^{2}} \cdot \frac{\left|1-\Gamma_{S}\right|^{2}}{\left|1-\Gamma_{S} \cdot \Gamma_{i n}\right|^{2}}
\end{aligned}
$$

Signal power

- Signal power

$$
\begin{aligned}
& P_{i n}=\frac{\left|V_{S}\right|^{2}}{8 \cdot Z_{0}} \cdot \frac{\left|1-\Gamma_{S}\right|^{2}}{1-\left.\Gamma_{S} \cdot \Gamma_{i n}\right|^{2}}\left(1-\left|\Gamma_{i n}\right|^{2}\right) \\
& P_{L}=\frac{\left|V_{S}\right|^{2}}{8 \cdot Z_{0}} \cdot \frac{\left|S_{21}\right|^{2} \cdot\left(1-\left|\Gamma_{L}\right|^{2}\right.}{\left|1-S_{22} \cdot \Gamma_{L}\right|^{2}} \cdot \frac{\left|1-\Gamma_{S}\right|^{2}}{\left|1-\Gamma_{S} \cdot \Gamma_{i n}\right|^{2}}
\end{aligned}
$$

- Power available from the source

$$
P_{a v S}=\left.P_{i n}\right|_{\Gamma_{i n}=\Gamma_{S}^{*}}=\frac{\left|V_{S}\right|^{2}}{8 \cdot Z_{0}} \cdot \frac{\left|1-\Gamma_{S}\right|^{2}}{\left(1-\left|\Gamma_{S}\right|^{2}\right)}
$$

- Power available on the load (from the network)

$$
P_{a v L}=\left.P_{L}\right|_{\Gamma_{L}=\Gamma_{\text {out }}^{*}}=\frac{\left|V_{S}\right|^{2}}{8 \cdot Z_{0}} \cdot \frac{\left|S_{21}\right|^{2} \cdot\left|1-\Gamma_{S}\right|^{2}}{\left|1-S_{11} \cdot \Gamma_{S}\right|^{2} \cdot\left(1-\left|\Gamma_{\text {out }}\right|^{2}\right)}
$$

Two-Port Power Gains

- Power Gain

$$
G=\frac{P_{L}}{P_{i n}}=\frac{\left|S_{21}\right|^{2} \cdot\left(1-\left|\Gamma_{L}\right|^{2}\right)}{\left(1-\left|\Gamma_{i n}\right|^{2}\right) \cdot\left|1-S_{22} \cdot \Gamma_{L}\right|^{2}} \quad \begin{array}{ll}
\text { in } & =P_{i n}\left(\Gamma_{S}, \Gamma_{i n}\left(\Gamma_{L}\right), S\right) \\
P_{L}=P_{L}\left(\Gamma_{S}, \Gamma_{i n}\left(\Gamma_{L}\right), S\right)
\end{array}
$$

- The actual power gain introduced by the amplifier is less important because a higher gain may be accompanied by a decrease in input power (power actually drained from the source)
- We prefer to characterize the amplifier effect looking to the power actually delivered to the load in relation to the power available from the source (which is a constant)

Two-Port Power Gains

- Available power gain

$$
G_{A}=\frac{P_{a v L}}{P_{a v S}}=\frac{\left|S_{21}\right|^{2} \cdot\left(1-\left|\Gamma_{S}\right|^{2}\right)}{\left|1-S_{22} \cdot \Gamma_{L}\right|^{2} \cdot\left(1-\left|\Gamma_{\text {out }}\right|^{2}\right)}
$$

- Transducer power gain

$$
G_{T}=\frac{P_{L}}{P_{a v S}}=\frac{\left|S_{21}\right|^{2} \cdot\left(1-\left|\Gamma_{S}\right|^{2}\right) \cdot\left(1-\left|\Gamma_{L}\right|^{2}\right)}{\left|1-\Gamma_{S} \cdot \Gamma_{i n}\right|^{2} \cdot\left|1-S_{22} \cdot \Gamma_{L}\right|^{2}}
$$

$$
\Gamma_{i n}=\Gamma_{i n}\left(\Gamma_{L}\right)
$$

- Unilateral transducer power gain

$$
G_{T U}=\left|S_{21}\right|^{2} \cdot \frac{1-\left|\Gamma_{S}\right|^{2}}{\left|1-S_{11} \cdot \Gamma_{S}\right|^{2}} \cdot \frac{1-\left|\Gamma_{L}\right|^{2}}{\left|1-S_{22} \cdot \Gamma_{L}\right|^{2}}
$$

$$
S_{12} \cong 0 \quad \Gamma_{i n}=S_{11}
$$

Amplifier as two-port

- For an amplifier two-port we are interested in:
- stability
- power gain
- noise (sometimes - small signals)
- linearity (sometimes - large signals)

Microwave Amplifiers
Stability

Amplifier as two-port

- For an amplifier two-port we are interested in:
- stability
- power gain
- noise (sometimes - small signals)
- linearity (sometimes - large signals)

Stability

- L6 $\quad \Gamma=\Gamma_{r}+j \cdot \Gamma_{i}$

$$
Z_{i n} \quad \Gamma_{i n}=\Gamma_{r}+j \cdot \Gamma_{i}
$$

$$
r_{L}=\frac{1-\Gamma_{r}^{2}-\Gamma_{i}^{2}}{\left(1-\Gamma_{r}\right)^{2}+\Gamma_{i}^{2}}
$$

- instability
$\operatorname{Re}\left\{Z_{i n}\right\}<0 \Leftrightarrow 1-\Gamma_{r}^{2}-\Gamma_{i}^{2}<0 \quad \Gamma_{r}^{2}+\Gamma_{i}^{2}>1 \quad\left|\Gamma_{i n}\right|>1$
- stability, $Z_{\text {in }}$
- conditions to be met by Γ_{L} to achieve (input) stability

$$
\begin{gathered}
\left|\Gamma_{i n}\right|<1 \\
\text { - similarly } Z_{\text {out }}
\end{gathered}\left|S_{11}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{L}}{1-S_{22} \cdot \Gamma_{L}}\right|<1
$$

- conditions to be met by Γ_{S} to achieve (output) stability

Stability

$$
\left|\Gamma_{i n}\right|<1 \quad\left|S_{11}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{L}}{1-S_{22} \cdot \Gamma_{L}}\right|<1
$$

- We can calculate conditions to be met by Γ_{L} to achieve stability

$$
\left|\Gamma_{\text {out }}\right|<1 \quad\left|S_{22}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{S}}{1-S_{11} \cdot \Gamma_{s}}\right|<1
$$

- We can calculate conditions to be met by Γ_{S} to achieve stability

Stability

$$
\left|\Gamma_{i n}\right|<1 \quad\left|S_{11}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{L}}{1-S_{22} \cdot \Gamma_{L}}\right|<1
$$

The limit between stability/instability

$$
\begin{gathered}
\left|\Gamma_{i n}\right|=1 \quad\left|S_{11}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{L}}{1-S_{22} \cdot \Gamma_{L}}\right|=1 \\
\left|S_{11} \cdot\left(1-S_{22} \cdot \Gamma_{L}\right)+S_{12} \cdot S_{21} \cdot \Gamma_{L}\right|=11-S_{22} \cdot \Gamma_{L} \mid
\end{gathered}
$$

- determinant of the S matrix $\Delta=S_{11} \cdot S_{22}-S_{12} \cdot S_{21}$

$$
\begin{aligned}
& \left|S_{11}-\Delta \cdot \Gamma_{L}\right|=\left|1-S_{22} \cdot \Gamma_{L}\right|^{2} \\
& \left|S_{11}-\Delta \cdot \Gamma_{L}\right|^{2}=\left|1-S_{22} \cdot \Gamma_{L}\right|^{2}
\end{aligned}
$$

Stability

$$
\begin{aligned}
& \left|S_{11}-\Delta \cdot \Gamma_{L}\right|^{2}=\left|1-S_{22} \cdot \Gamma_{L}\right|^{2} \\
& a \cdot a^{*}=|a| \cdot e^{j \theta} \cdot|a| \cdot e^{-j \theta}=|a|^{2} \\
& |a+b|^{2}=(a+b) \cdot(a+b)^{*}=(a+b) \cdot\left(a^{*}+b^{*}\right)=|a|^{2}+|b|^{2}+\underline{a^{*} \cdot b+a \cdot b^{*}} \\
& \left|S_{11}\right|^{2}+|\Delta|^{2} \cdot\left|\Gamma_{L}\right|^{2}-\left(\Delta \cdot \Gamma_{L} \cdot S_{11}^{*}+\Delta^{*} \cdot \Gamma_{L}^{*} \cdot S_{11}\right)=1+\left|S_{22}\right|^{2} \cdot\left|\Gamma_{L}\right|^{2}-\left(S_{22}^{*} \cdot \Gamma_{L}^{*}+S_{22} \cdot \Gamma_{L}\right) \\
& \left(\left|S_{22}\right|^{2}-|\Delta|^{2}\right) \cdot \Gamma_{L} \cdot \Gamma_{L}^{*}-\left(S_{22}-\Delta \cdot S_{11}^{*}\right) \cdot \Gamma_{L}-\left(S_{22}^{*}-\Delta^{*} \cdot S_{11}\right) \cdot \Gamma_{L}^{*}=\left|S_{11}\right|^{2}-1 \\
& \Gamma_{L} \cdot \Gamma_{L}^{*}-\frac{\left(S_{22}-\Delta \cdot S_{11}^{*}\right) \cdot \Gamma_{L}+\left(S_{22}^{*}-\Delta^{*} \cdot S_{11}\right) \cdot \Gamma_{L}^{*}}{\left|S_{22}\right|^{2}-|\Delta|^{2}}=\frac{\left|S_{11}\right|^{2}-1}{\left|S_{22}\right|^{2}-|\Delta|^{2}} \quad+\frac{\left|S_{22}-\Delta \cdot S_{11}^{*}\right|^{2}}{\left(\left|S_{22}\right|^{2}-|\Delta|^{2}\right)^{2}} \\
& \left|\Gamma_{L}-\frac{\left(S_{22}-\left.\left.\Delta \cdot S_{11}^{*}\right|^{*}\right|^{2}\right.}{\left|S_{22}\right|^{2}-|\Delta|^{2}}\right|^{\mid}=\frac{\left|S_{11}\right|^{2}-1}{\left|S_{22}\right|^{2}-|\Delta|^{2}}+\frac{\left|S_{22}-\Delta \cdot S_{11}^{*}\right|^{2}}{\left(\left|S_{22}\right|^{2}-|\Delta|^{2}\right)^{2}}
\end{aligned}
$$

Stability

Output stability circle (CSOUT)

$$
\left|\Gamma_{L}-\frac{\left(S_{22}-\Delta \cdot S_{11}^{*}\right)^{*} \mid}{\left|S_{22}\right|^{2}-|\Delta|^{2}}\right|=\left|\frac{S_{12} \cdot S_{21}}{\left|S_{22}\right|^{2}-|\Delta|^{2}}\right|
$$

$$
\left|\Gamma_{L}-C_{L}\right|=R_{L}
$$

- We obtain the equation of a circle in the complex plane, which represents the locus of Γ_{L} for the limit between stability and instability $\left(\left|\Gamma_{\text {in }}\right|=1\right.$)
- This circle is the output stability circle (Γ_{L})

$$
C_{L}=\frac{\left(S_{22}-\Delta \cdot S_{11}^{*}\right)^{*}}{\left|S_{22}\right|^{2}-|\Delta|^{2}} \quad R_{L}=\frac{\left|S_{12} \cdot S_{21}\right|}{\left|\left|S_{22}\right|^{2}-|\Delta|^{2}\right|}
$$

Input stability circle (CSIN)

- Similarly

$$
\left|\Gamma_{\text {out }}\right|=1
$$

$$
\left|S_{22}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{s}}{1-S_{11} \cdot \Gamma_{S}}\right|=1
$$

- We obtain the equation of a circle in the complex plane, which represents the locus of Γ_{s} for the limit between stability and instability ($\left|\Gamma_{\text {out }}\right|=1$)
- This circle is the input stability circle $\left(\Gamma_{s}\right)$

$$
C_{S}=\frac{\left(S_{11}-\Delta \cdot S_{22}^{*}\right)^{*}}{\left|S_{11}\right|^{2}-|\Delta|^{2}} \quad R_{S}=\frac{\left|S_{12} \cdot S_{21}\right|}{\left|\left|S_{11}\right|^{2}-|\Delta|^{2}\right|}
$$

Output stability circle (CSOUT)

- The output stability circle represents the locus of Γ_{L} for the limit between stability and instability $\left(\left|\Gamma_{\text {in }}\right|=1\right)$
- The circle divides the complex planes in two areas, the inside and the outside of the circle
- The two areas will represent the locus of Γ_{L} for stability $\left(\left|\Gamma_{\text {in }}\right|<1\right) /$ instability $\left(\left|\Gamma_{\text {in }}\right|>1\right)$

Output stability circle (CSOUT)

- Two cases possible: (a) stable outside/ (b) stable inside

Output stability circle (CSOUT)

- Identification of the stability / instability regions
- The center of the Smith Chart in Γ_{L} complex plane corresponds to $\Gamma_{L}=0$
- Input reflection coefficient

$$
\Gamma_{i n}=S_{11}+\left.\frac{S_{12} \cdot S_{21} \cdot \Gamma_{L}}{1-S_{22} \cdot \Gamma_{L}} \quad \Gamma_{i n}\right|_{\Gamma_{L}=0}=S_{11} \quad\left|\Gamma_{i n}\right|_{\Gamma_{L}=0}=\left|S_{11}\right|
$$

- A decision can be made based on $\left|S_{11}\right|$ value and on the position of the center of the Smith chart (origin of the complex plane) relative to the circle

Identification of the stability / instability regions

- Output stability circle
- $\left|S_{11}\right|<1 \rightarrow$ the center of the Smith chart on which Γ_{L} is represented is a stable point, so it's placed in the stability region (most often situation)
- $\left|S_{11}\right|>1 \rightarrow$ the center of the Smith chart on which Γ_{L} is represented is a unstable point, so it's placed in the instability region
- Input stability circle
- $|S 22|<1 \rightarrow$ the center of the Smith chart on which Γ_{S} is represented is a stable point, so it's placed in the stability region (most often situation)
- $\left|S_{22}\right|>1 \rightarrow$ the center of the Smith chart on which Γ_{S} is represented is a unstable point, so it's placed in the instability region

Example

- ATF-34143 at Vds=3V Id=20mA.

@ 5 GHz

- S11 = $0.64 \angle 139^{\circ}$
- S $12=0.119 \angle-21^{\circ}$
- S21 $=3.165 \angle 16^{\circ}$
- $\mathrm{S} 22=0.22 \angle 146^{\circ}$
$S_{11}=0.64 \cdot \cos 139^{\circ}+j \cdot 0.64 \cdot \sin 139^{\circ}$
$S_{11}=-0.4830+j \cdot 0.4199$

```
!ATF-34143
!S-PARAMETERS at Vds=3V Id=20mA. LAST UPDATED 01-29-99
```

\# ghz s mar 50
$\begin{array}{lllllllllllllllll}2.0 & 0.75 & -126 & 6.306 & 90 & 0.088 & 23 & 0.26 & -120\end{array}$ 2.50 .72 -145 5.438750 .095150 .25 -140 $\begin{array}{lllllllllllllllll}3 & 0.69 & -162 & 4.762 & 62 & 0.102 & 7 & 0.23 & -156\end{array}$
$\begin{array}{lllllllll}4.0 & 0.65 & 166 & 3.806 & 38 & 0.111 & -8 & 0.22 & 174\end{array}$
$5.00 .641393 .165160 .119-210.22146$
$\begin{array}{llllllllll}6.0 & 0.65 & 114 & 2.706 & -5 & 0.125 & -35 & 0.23 & 118\end{array}$
$7.00 .66892 .326-270.129-490.2591$
$8.00 .69672 .017-470.133-620.2967$

!FREQ Fopt GAMMA OPT RN/Zo
GHZ dB MAG ANG
$2.0 \quad 0.19 \quad 0.71660 .09$
$\begin{array}{llllll}2.5 & 0.23 & 0.65 & 83 & 0.07\end{array}$
3.00 .290 .591020 .06
$4.0 \quad 0.420 .51 \quad 1380.03$
5.00 .540 .451740 .03
$\begin{array}{llllllllllllll}6.0 & 0.67 & 0.42 & -151 & 0.05\end{array}$
$\begin{array}{llllllllll}7.0 & 0.79 & 0.42 & -118 & 0.10\end{array}$
$8.00 .920 .45-880.18$
$\begin{array}{llllllllllll} & 9.0 & 1.04 & 0.51 & -63 & 0.30\end{array}$
10 م 1 16 16 - $61-43-0.46$

Example

- ATF-34143
- at
- Vds=3V
- Id=20mA.

freq $(500.0 \mathrm{MHz}$ to 18.00 GHz$)$

Solution + region identification

- S parameters
- $\mathrm{S} 11=-0.483+0.42 \cdot \mathrm{j}$
- $\mathrm{S} 12=0.111-0.043 \cdot \mathrm{j}$
- $S 21=3.042+0.872 \cdot j$

$$
C_{L}=\frac{\left(S_{22}-\Delta \cdot S_{11}^{*}\right)^{*}}{\left|S_{22}\right|^{2}-|\Delta|^{2}}=3.931-0.897 \cdot j
$$

$\left|C_{L}\right|=4.032$

- $\mathrm{S} 22=-0.182+0.123 \cdot j$
- |S11|=0.64<1
$\left|C_{L}\right|<R_{L}, 0 \in C S O U T$
$R_{L}=\frac{\left|S_{12} \cdot S_{21}\right|}{\left|\left|S_{22}\right|^{2}-|\Delta|^{2}\right|}=4.891$
- The center of the Smith chart is placed inside the output stability circle ($0 \in$ CSOUT) and is a stable point (| $S_{11} \mid<1$)
- the inside of the output stability circle - stability region
- the outside of the output stability circle - instability region

Solution + region identification

- S parameters
- $\mathrm{S} 11=-0.483+0.42 \cdot \mathrm{j}$
- $\mathrm{S} 12=0.111-0.043 \cdot \mathrm{j}$
- $\mathrm{S} 21=3.042+0.872 \cdot j$
- $S 22=-0.182+0.123 \cdot j$
- $\left|S_{22}\right|=0.22<1$
$\left|C_{S}\right|>R_{S}, 0 \notin C S I N$
The center of the Smith chart is placed outside
the input stability circle ($0 \notin$ CSIN) and is a stable
The center of the Smith chart is placed outside
the input stability circle ($0 \notin$ CSIN) and is a stable point (|S22 |<1)
- the outside of the input stability circle - stability region
- the inside of the input stability circle - instability region

$$
\begin{aligned}
& C_{S}=\frac{\left(S_{11}-\Delta \cdot S_{22}^{*}\right)^{*}}{\left|S_{11}\right|^{2}-|\Delta|^{2}}=-1.871-1.265 \cdot j \\
& \left|C_{S}\right|=2.259 \\
& R_{S}=\frac{\left|S_{12} \cdot S_{21}\right|}{\left|\left|S_{11}\right|^{2}-|\Delta|^{2}\right|}=1.325
\end{aligned}
$$

ADS

3D representation of $\left|\Gamma_{\text {in }}\right| \iota\left|\Gamma_{\text {out }}\right|$

- High variations -> we change to z logarithmic scale $\underset{\Gamma_{\text {in }}\left(\Gamma_{\mathrm{L}}\right)}{\Gamma_{i n}\left(\Gamma_{L}\right)=S_{11}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{L}}{1-S_{22} \cdot \Gamma_{L}}, ~()^{2}}$

$$
\underset{\Gamma_{\text {outut }} \Gamma_{\text {ous }}}{ }\left(\Gamma_{S}\right)=S_{22}+\frac{S_{12} \cdot S_{21} \cdot \Gamma_{S}}{1-S_{11} \cdot \Gamma_{S}}
$$

3D representation of $\left|\Gamma_{\text {in }}\right| \mu\left|\Gamma_{\text {out }}\right|$

$=\log _{10}\left|\Gamma_{i n}, \log _{10}\right| \Gamma_{\text {out }} \mid$
$\log \left(\Gamma_{i n}\left(\Gamma_{L}\right)\right)$
$\log \left(\Gamma_{\text {out }}\left(\Gamma_{\mathbf{S}}\right)\right)$

3D representation of $\left|\Gamma_{\text {in }}\right| \iota\left|\Gamma_{\text {out }}\right| \iota|\Gamma|=1$

- $|\Gamma|=1 \rightarrow \log _{10}|\Gamma|=0$, the intersection with the plane $z=0$ is a circle
$\log \left(\Gamma_{i n}\left(\Gamma_{L}\right)\right)$
$\log \left(\Gamma_{\text {out }}\left(\Gamma_{S}\right)\right)$

Contour map/lines

Contour lines of $\log _{10}\left|\Gamma_{\text {in }}\right|$

Contour lines of $\log _{10}\left|\Gamma_{\text {out }}\right|$

CSIN, CSOUT

Several possible positioning

Several possible positioning

(Quite) Rare positioning

Stability

- Unconditional stability: the circuit is unconditionally stable if $\left|\Gamma_{\text {in }}\right|<1$ and $\left|\Gamma_{\text {out }}\right|<1$ for any passive impedance of the load/source
- Conditional stability: the circuit is conditionally stable if $\left|\Gamma_{\text {in }}\right|<1$ and $\left|\Gamma_{\text {out }}\right|<1$ only for some passive impedance of the load/source
" passive impedance of the load/source <-> interior of the Smith Chart (radius 1 circle in the complex plane)

Unconditional stability

- The two-port is unconditionally stable if either:
- The stability circle is disjoint with the Smith Chart (exterior to the Chart) and the stable region is outside the circle
- The stability circle encloses the entire Smith Chart and the stable region is inside the circle
- One mandatory condition for unconditional stability is $\left|\mathrm{S}_{11}\right|<1$ (CSOUT) or $\left|\mathrm{S}_{22}\right|<1$ (CSIN) if in at least one point the two-port is not stable then it cannot be unconditionally stable
- Mathematically:

$$
\left\{\begin{array} { l }
{ | | C _ { L } | - R _ { L } | > 1 } \\
{ | S _ { 1 1 } | < 1 }
\end{array} \quad \left\{\begin{array}{l}
\left|\left|C_{S}\right|-R_{S}\right|>1 \\
\left|S_{22}\right|<1
\end{array}\right.\right.
$$

Tests for Unconditional Stability

- Useful for wide frequency range analysis
- It is not enough to check the stability only at the operating frequencies
- we must obtain stable operation for chosen Γ_{L} and Γ_{S} at any frequency

Circles in wide frequency range

Rollet's condition

$$
K=\frac{1-\left|S_{11}\right|^{2}-\left|S_{22}\right|^{2}+|\Delta|^{2}}{2 \cdot\left|S_{12} \cdot S_{21}\right|}
$$

$$
\Delta=S_{11} \cdot S_{22}-S_{12} \cdot S_{21}
$$

- The two-port is unconditionally stable if:
- two conditions are simultaneously satisfied:
- K > 1
- $|\Delta|<1$
- together with the implicit conditions:
- $\left|S_{11}\right|<1$
- $|S 22|<1$
$K=\frac{1-\left|S_{11}\right|^{2}-\left|S_{22}\right|^{2}+|\Delta|^{2}}{2 \cdot\left|S_{12} \cdot S_{21}\right|}>1$
$|\Delta|=\left|S_{11} \cdot S_{22}-S_{12} \cdot S_{21}\right|<1$

μ Criterion

- Rollet's condition cannot be used to compare the relative stability of two or more devices because it involves constraints on two separate parameters, K and Δ

$$
\mu=\frac{1-\left|S_{11}\right|^{2}}{\left|S_{22}-\Delta \cdot S_{11}^{*}\right|+\left|S_{12} \cdot S_{21}\right|}>1
$$

- The two-port is unconditionally stable if:
- $\mu>1$
- together with the implicit conditions:
- $\left|S_{11}\right|<1$
- $|S 22|<1$
- In addition, it can be said that larger values of μ imply greater stability
- μ is the distance from the center of the Smith Chart to the closest output stability circle

μ^{\prime} Criterion

- Dual parameter to μ, determined in relation to the input stability circles

$$
\mu^{\prime}=\frac{1-\left|S_{22}\right|^{2}}{\left|S_{11}-\Delta \cdot S_{22}^{*}\right|+\left|S_{12} \cdot S_{21}\right|}>1
$$

- The two-port is unconditionally stable if:
- $\mu^{\prime}>1$
- together with the implicit conditions:
- $\left|S_{11}\right|<1$
- $|S 22|<1$
- In addition, it can be said that larger values of μ^{\prime} imply greater stability
- μ^{\prime} is the distance from the center of the Smith Chart to the closest input stability circle

Rollet's condition

- ATF-34143 at Vds=3V Id=20mA.
- @ $0.5 \div 18 \mathrm{GHz}$

μ Criterion

- ATF-34143 at Vds=3V Id=20mA.
- @ $0.5 \div 18 \mathrm{GHz}$

Unconditionally Stable

μ^{\prime} Criterion

- ATF-34143 at Vds=3V Id=20mA.
- @o. $5 \div 18 \mathrm{GHz}$

Unconditionally
Stable

Stability

- ATF-34143 at Vds=3V Id=20mA.
- @ $0.5 \div 18 \mathrm{GHz}$
- unconditionally stable for $f>6.31 \mathrm{GHz}$

Stabilization of two-port

- Unconditional stability in a wide frequency range has some important advantages
- Ex: We can use ATF 34143 to design a (conditionally) stable amplifier at 5 GHz , but this design is useless if the amplifier oscillates at 500 MHz ($\mu \approx 0.1$)
- The minimal requirement when working with conditionally stable devices is to check stability at several frequencies over the operating bandwidth and outside the bandwidth
- Unconditional stability can be forced by inserting series/shunt resistors at two-port's input/output (with loss of gain!)

Input series resistor

ADS, $\mathrm{Rs}=2 \Omega$

Input series resistor

- Rs $=2 \Omega$
- $\mathrm{K}=1.008, \mathrm{MAG}=13.694 \mathrm{~dB}$ @ 5 GHz
" no stabilization, $\mathrm{K}=0.886, \mathrm{MAG}=14.248 \mathrm{~dB}$ @ 5 GHz

Input shunt resistor

ADS, Rp $=90 \Omega$

Input shunt resistor

- $\mathrm{Rp}=90 \Omega$
- $\mathrm{K}=1.013, \mathrm{MAG}=13.561 \mathrm{~dB}$ @ 5 GHz
- no stabilization, $\mathrm{K}=0.886$, $\mathrm{MAG}=14.248 \mathrm{~dB}$ @ 5 GHz

Output series/shunt resistor

- The procedure can be applied similarly at the output (finding g/r circles tangent to CSOUT)
- From previous examples, resistive loading at the input has a positive effect over output stability and vice versa (resistive loading at the output, effect over input stability)

Stabilization of two-port

- Negative effect over the power gain
" we must check MAG/MSG while designing resistive loading
- Negative effect over the noise (debated next)
- We can choose one of the 4 possibilities or a combination which offers better results (depending on transistor, application etc.)
- We can use frequency selective loading
- Ex: RL, RC circuits which sacrifice performance only when needed to improve stability and have no effect at frequencies where the device is already stable
- It might be possible (and should be checked) that stability is improved as an effect of parasitic elements of biasing circuits (bypass capacitors and RF chokes)

Stabilization of two-port

Stabilization of two-port

freq, GHz

Stabilization of two-port

Stabilization of two-port

Stabilization of two-port

Stabilization of two-port

Contact

- Microwave and Optoelectronics Laboratory
- http://rf-opto.etti.tuiasi.ro
- rdamian@etti.tuiasi.ro

